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Transport in rough self-affine fractures
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Transport properties of three-dimensional self-affine rough fractures are studied by means of an effective-
medium analysis and numerical simulations using the Lattice-Boltzmann method. The numerical results show
that the effective-medium approximation predicts the right scaling behavior of the permeability and of the
velocity fluctuations, in terms of the aperture of the fracture, the roughness exponent, and the characteristic
length of the fracture surfaces, in the limit of small separation between surfaces. The permeability of the
fractures is also investigated as a function of the normal and lateral relative displacements between surfaces,
and it is shown that it can be bounded by the permeability of two-dimensional fractures. The development of
channel-like structures in the velocity field is also numerically investigated for different relative displacements
between surfaces. Finally, the dispersion of tracer particles in the velocity field of the fractures is investigated
by analytic and numerical methods. The asymptotic dominant role of the geometric dispersion, due to velocity
fluctuations and their spatial correlations, is shown in the limit of very small separation between fracture
surfaces.
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I. INTRODUCTION

The transport of fluids in geological media plays a dom
nant role in different applications such as subsurface hyd
ogy, hydrocarbon recovery, and waste storage, and the tr
port properties of such media involves a combination of fl
flow at different length scales. First, there is transport at
microscopic level through the pore space of the rock its
Then, at macroscopic length scales, the flow through fr
tures is, in most cases, the dominant transport mechan
Finally, at even larger length scales, the dominant convec
transport involves the flow through fracture networks. T
first case has received considerable attention and is relat
well understood and, in fact, it can be placed within t
framework of transport in porous media@1–3#. On the other
hand, understanding the flow through single fractures
clearly a prerequisite to the investigation or modeling
more complex cases such as the flow through macrosc
fracture networks. Another key transport process presen
geological systems, the transport of tracer particles car
by the fluid also requires an adequate understanding of
flow properties, in particular, the statistical properties of
velocity field.

Fractures have often been modeled as simple Hele-S
cells, with a cubic relation between the volumetric flow ra
and the average aperture of the fracture, usually focus
most of the effort on investigating the flow through a ma
roscopic network of such fractures. However, although
typical fractured rock surface appears fairly smooth, as
from some random roughness, suggesting that Poise
flow in a straight channel is the appropriate model of flo
laboratory experiments@4,5# and numerical simulations@6,7#
indicate that this classical view of a rock fracture as
straight channel is not adequate to describe the fluid fl
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even at low Reynolds numbers. In fact, more careful analy
showed, in recent years, that geological fractures pre
highly spatially correlated, self-affine surfaces, with a roug
ness exponentz'0.8 surprisingly constant for differen
types of rocks whether naturally or artificially fracture
@5,8–11#. In view of these results, theoretical and numeric
studies introduced the complex geometry of the fracture
order to calculate the transport properties of the syst
However, the majority of these studies assumed that the R
nolds~lubrication! approximation is valid so that the velocit
field is given by a Poiseuille flow everywhere, with a par
bolic velocity profile across the aperture and in the direct
of the mean flow@6,11–17#. While this approximation has
proven very useful in the case of uncorrelated opposing fr
ture surfaces~fracturefaults! @11,17#, it clearly fails to cap-
ture the roughness effects in the case we consider he
perfectly mated fracture surfaces in which the aperture
constant~fracture joints!. In the lubrication approximation
our rough fractures are equivalent to a channel with
constant-width gap, without the vertical components of
fluid velocity which are particularly important in the limit o
narrow fractures where the roughness amplitude is la
compared to the aperture.

In a previous work@7#, we proposed a different approac
in which a two-dimensional fracture is divided into approx
mately straight segments with varying orientation angl
This approach allowed us to obtain the correction to the fl
rate due to surface roughness as a function of the ape
and was validated by our numerical simulations.~A similar
approach was used by Oron and Berkowitz to analyze
case of fractures with contacts between surfaces@18#.! In this
work, we shall further investigate the case of narrow fra
tures, extending the results to three-dimensional fractu
We shall see that it is possible to obtain analytic expressi
for the permeability of the fracture and for the velocity flu
tuations, in the limit of narrow fractures, by means of t
effective-medium approximation. We shall also investiga
the dispersion of tracer particles advected by the flow fi
©2002 The American Physical Society03-1
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GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E66, 026303 ~2002!
within the fracture and its dependence on the aperture.
We shall first, in Sec. II, briefly discuss some basic de

nitions associated with self-affine surfaces and present
model of fractures as the gap between two perfectly ma
ing self-affine surfaces. The Lattice-Boltzmann method, u
to numerically simulate the fluid flow through the fracture
is briefly presented in Sec. III. Then, in Sec. IV we sh
investigate the permeability by means of the effectiv
medium approximation and compare the results with our
merical results. Finally, in Sec. V we investigate the disp
sion of tracer particles convected by the flow field within t
fracture and its dependence on the aperture of the fractu

II. SELF-AFFINE FRACTURE SURFACES

Following the work of Mandelbrot@19#, the application of
the fractal model to describe surface topography has bec
widespread as it has been shown in several experiments
fracture surfaces, with various materials and fracturing me
ods, exhibit statistically self-affine scaling properties. P
ticularly relevant to our work are the experiments perform
with naturally fractured rocks@20–23#. This self-affine de-
scription of fracture surfaces substantially improves the ch
acterization of rough surfaces in terms of surface mean
rameters such as the root-mean-square~rms! roughness, rms
slope, and density of peaks, in that it provides the sca
behavior of these parameters, which are not intrinsic pro
ties of the surface but strongly depend on the sample
@20,21#.

We consider a rock surface without overhangs@20#,
whose height is given by a single-valued functionz(x,y),
with the coordinatesx andy lying in the mean plane of the
fracture. Self-affine surfaces display scale invariance w
different dilation ratios along different spatial direction
Here we consider disordered media, so these scaling
apply only in an ensemble or spatial average sense. Exp
ment indicates that for many materials isotropy can be
sumed in the mean plane. Therefore, the surface height
homogeneous function, of degreez, on the mean plane co
ordinates@24#,

z~x,y!5l2zz~lx,ly!, ~1!

where z is usually referred to as the roughness or Hu
exponent@19#.

In studies with several different types of fractured roc
the roughness exponent is found to be close toz50.8, inde-
pendent of the material and of the fracture mode@5,8–
11,21,22#.

The Hurst exponent is not enough to describe a self-af
surface, and, in addition, the amplitude of the fluctuations
the height of the surface is to be specified. This amplitude
the fluctuations is usually expressed in terms of the cha
teristic length,, which is the horizontal distance over whic
fluctuations in height have a rms slope of one,sz

2(,)5,2.
Using the self-affine scaling law we can then obtain the v
ance of the fluctuations in surface height, over any len
scaler, in terms of the roughness exponentz and the char-
acteristic length,,
02630
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In principle, the characteristic length, can take any
value, however, for fractured rocks it is usually found to
very small, and to lie either below the accessible range
length scales in the experiment (,<0.5 mm @21#! or below
the self-affine range of the surface@5,25#. Therefore, we shall
not consider cases in which, is within the simulated range
of length scales.

The self-affine surfaces are generated by a tw
dimensional generalization of the Fourier synthesis met
previously used by us for the generation of self-affine cur
@7#. Initially, an L3L matrix, where each element will rep
resent the height of the discrete version of the fracture s
face, is generated with statistically independent, Gaus
distributed, random numbers. Then, the Fourier transform
this initial random matrix is modulated by a power-law hig
wave-numbers filter that introduces height-to-height corre
tions @26#. Finally, the whole surface is rescaled in order
get the desired characteristic length,. In this work we shall
usez50.8 and,.331023. This numerical method gener
ates homogeneous and isotropic surfaces, and is prefe
instead of other numerical methods such as the random
dition algorithm~for a discussion of this point see Ref.@27#,
Sec. V A!. The surfaces generated are periodic inx andy, as
is shown in Fig. 1, and, although the periodicity is not phy
cally important it has some computational advantages w
calculating the flow field using periodic boundary condition

We shall model fractures as the gap between a self-af
surface and its replica, which is translated by a fixed dista
h in the direction normal to the mean plane of the surfa
However, during the fracturing process of the rock, the o
posite matching surfaces might experience a lateral shift
addition to the vertical displacement. Therefore, we sh

FIG. 1. Example of a numerically generated self-affine surfa
with roughness exponentz50.8, characteristic length,.331023,
and sizeL3L564364.
3-2
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TRANSPORT IN ROUGH SELF-AFFINE FRACTURES PHYSICAL REVIEW E66, 026303 ~2002!
also consider this situation by introducing a lateral shift
the upper surface either along the direction of the mean fl
or perpendicular to it.

In this work, we will analyze, for both types of fracture
with and without lateral shift, the case ofnarrow fractures, in
which the gap sizeh is small compared to the vertical fluc
tuations of the fracture surface over length scales compar
to the size of the systemL. In view of Eq.~2!, we obtain that
fluctuations of the surface height over the whole system
given bysz(L)5,(L/,)z and, then the limiting situation o
narrow fractures corresponds to, (h/,)!(L/,)z. In our
simulations, for systems sizeL5512 the largest gap siz
consistent with the previous constraint ishmax;50. In our
numerical simulations, unless otherwise stated, we use
statistically independent realizations of the fracture surfa
and the results presented correspond to the average
these different realizations.

III. LATTICE-BOLTZMANN METHOD

The Lattice-Boltzmann method~LBM ! @28,29# is particu-
larly suitable to investigate the flow of fluids in highly ir
regular geometries, and, specifically, to study the various
tures of transport in self-affine rough fractures which a
sensitive to their complex geometrical structure. A brief d
scription of this algorithm is presented in our previous wo
@7#. Periodic boundary conditions are used for the inflow a
outflow surfaces and a constant pressure gradient forcing
fluid is added in thex direction, while the gap between su
faces extends overz.

In what follows all quantities will be rendered dimensio
less by the characteristic units of the numerical simulati
That is, taking the lattice spacing as the unit length and
simulation time step as the time unit. Note that, since we
concerned with incompressible flows, we do not need to
troduce a dimension of mass. The relaxation time is cho
so that the kinematic viscosity isn50.1 in dimensionless
units. The pressure gradient is¹p56.2531026, yielding a
mean velocity in the range 2.031024,Ux,2.031022, for
separation between surfaces of the fracture between<
<64. Then, for aperturesh not larger thanhS520, the Rey-
nolds number is Re5Uxh/n,1 and the flow is governed b
the linear Stokes equations, which are invariant under ve
ity rescaling. Moreover, using the results of Ref.@30#, where
inertia effects in a self-affine channel are investigated, we
that for aperturesh532 (Re51.6; note the porosity factor in
Ref. @30#!, the deviation from the Stokes result for the pre
sure loss is less than 0.78%. Therefore, possibly aside f
the simulations with the largest apertureh564, there are no
significant inertia effects on the flow rate.

IV. PERMEABILITY OF SELF-AFFINE FRACTURES

Let us consider first the case in which the two match
surfaces of a fractured rock are separated by a distanceh in
the normal direction, with no lateral shift between them.
this situation, the aperture of the fracture is clearly const
everywhere, but the effective local aperture for fluid flo
i.e., the local width of the fracture channel normal to t
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mean flow direction strongly depends on the local angle
tween the surface and its mean plane. The following theo
ical analysis will be based on a kind of local lubricatio
approximation, in which the fracture is divided into small
rectangular blocks. The linear sizej of the blocks will be
estimated as the length scale over which fluctuations in
surface height are small compared to the aperture and t
each of these basic blocks can be considered, approxima
as two facing planes separated a distanceh and with varying
orientation angles with respect to the mean plane of
fracture.

A. Analog resistor network and effective-medium
approximation

The transport properties of these narrow fractures can
modeled using effective-medium ideas. The representatio
the fracture in terms of quasilinear blocks with random o
entation can be mapped onto a regular two-dimensio
square lattice, of lattice spacingj, where the disorder only
enters the distribution of hydraulic conductances lying
each of the lattice bonds. Moreover, fluid flow is a loca
conserved quantity at the lattice nodes and therefore this
resentation of the fracture is completely analogous to
classical random resistor networks that model electr
transport in disordered media@31,32,34#. This electrical ana-
log, in combination with the Reynolds approximation, h
been used previously in somewhat related contexts—to
scribe the flow behavior of fracture faults and the dep
dence of the permeability on the contact area between op
site surfaces@12,13#, and to calculate the conductivity o
fracture faults as a function of the separation between un
related opposite fracture surfaces@14,33#.

Consider the two opposite endsa andb of a single qua-
silinear block of a fracture, and its representation by a c
ductance joining the corresponding two lattice nodesa andb.
Moreover, consider that a pressure drop is imposed betw
the two nodes, and that the lattice bond joininga and b is
oriented either parallel or perpendicular to the mean flo
Using the Poiseuille result for the flow through this segm
of the fracture we have that

Qa→b52
@h cos~u!#3

12m

Dpab

@j/cos~u!#
52gabDpab , ~3!

whereQa→b is the flow rate from nodea to nodeb, gab is
the bond conductance,j is the linear size of the block, andu
is the orientation angle of the block, with respect to the me
plane of the fracture, in the direction of the imposed press
drop Dpab . Let us note that a slightly different approxima
tion to the transport of fluid in a single block can be made
modeling each block as a cylinder of diameterh cos(u) and
lengthj. However, these two approximations will only diffe
by a numerical factor, given that the ratio of the permeabi
of a cylinder to that of two parallel planes is independent
the separation between surfaces,kstraight /kcylinder532/12.
3-3
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GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E66, 026303 ~2002!
Furthermore, the fluid is incompressible and flux is co
served at each lattice node,

(
a→b

gab~pa2pb!50, ~4!

where the sum is over all nodesa connected directly tob.
Then, the problem is now to solve the previous system
equations in the case where the hydrodynamic conducta
gab vary according to some probability distribution, and w
shall discuss now an approximation commonly used to so
this type of problems in the physics of disordered med
namely, theeffective-medium theory.

The effective-medium approximation~EMA! is a standard
method commonly used to calculate effective properties o
microscopically disordered medium, in which the rando
microscopic parameters are replaced by a certain m
value, chosen in a self-consistent way~a detailed discussion
of this approximation can be found elsewhere@31,35#!. The
idea then is to choose a mean EMA hydraulic conducta
gm , in a self-consistent way, such that it reproduces the
erage local field. That is, the criterion to choosegm within
EMA is to require that the extra pressure differences,dpab
induced when one individual conductance reverts fromgm to
its original valuegab average to zero@36#,

K gm2g

gm1gL 50. ~5!

B. Probability distribution of conductances and mean EMA
conductance

In order to determine the mean EMA conductancegm , we
first need to obtain the probability distribution of the ind
vidual bond conductancesgab . The conductance of a singl
block is determined by the angle between the local orien
tion of the surface and the mean plane of the fracture@see
Eq. ~3!#. In terms of the height differenceZ between the two
ends of the block, the bond conductance can be written

g~Z!5G0S j2

j21Z2D 2

, G05
h3

12mj
. ~6!

Then, the average over local conductances given in Eq.~5!
can be performed in terms of the distribution of height d
ferencesZ, between points of the fracture surface separa
by a distancej ~note thatj is the distance between tw
points lying on the fracture surface projected over the m
plane, i.e., the lattice constant.!

Experimental measurements indicate that the distribu
of heights,p(Z), can be accurately described by a Gauss
distribution, at least for low-order moments@9,37#. Guided
by these results, the numerical procedure used to generat
fracture surfaces is intended to produce self-affine surfa
with Gaussian fluctuations of the height, as discussed in
II. Moreover, the perturbative analysis we shall pres
shows that higher moments of the height distribution fu
tion are related to higher order corrections togm and, there-
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fore, the exact functional form of the distribution is not re
evant but only its low-order moments.

Finally, we assume that neighboring conductances are
correlated. Note that short-range order induced by the co
lated topography of the fracture surfaces is accounted fo
means of the distribution of possible local orientation ang
of the unit blocks. In a similar manner in Ref.@14#, short-
range correlations were included by fixing the topology
the fundamental unit to be eitherhatsor buckets, represent-
ing peaks and valleys of the fracture surface~see Sec. 2.2 in
Ref. @14#!. Moreover, although long-range correlations a
not explicitly included in the effective-medium approxim
tion, it has been shown that EMA accurately describes
effective conductivity of two-dimensional networks close
the percolation threshold@33#. On the other hand, effective
medium is a poor approximation in the presence of lon
range spatial correlations, as arise in the presence of
channeling @14# or heterogeneities at the fracture sca
@11,17#, found in the case of uncorrelated opposing fractu
surfaces. Assuming then a random distribution of local c
ductances, we can rewrite the integral equation~5!, which
defines the EMA conductancegm , in terms of the reduced
variablex5Z/sz(j), which is normally distributed,

E dx
1

A2p
expS 2

x2

2 Dgm~11e2x2!22G0

gm~11e2x2!21G0

50, ~7!

where the dimensionless parametere5sz(j)/j is the ratio
between the average magnitude of the fluctuations in
height of the surfacesz(j) over a single block, and the siz
of these blocksj. In general, if the individual blocks of the
fracture are smaller than the characteristic lengthj,, we
have thate.1, ande,1 for j larger than,. However, since
we consider the case in which the characteristic length
small compared to the simulated length scales (,;1023

!1, see Sec. II!, we have that

e[
sz~j!

j
5S j

, D z21

!1. ~8!

Therefore, we can then evaluate the mean EMA conducta
in a perturbative weak-disorder expansion by computing s
cessive terms in the series expansion ofgm in the perturba-
tive parametere,

gm5gm
0 1gm

1 e21gm
2 e41•••. ~9!

Replacing this series expansion ofgm into Eq. ~7!, rearrang-
ing terms by their order ine, and given that the equatio
must be satisfied for any value ofe, we obtain the following
expressions forgm

i :

gm
0 5G0 , ~10a!

gm
1 522^x2&G0 , ~10b!

gm
2 5@^x4&12^x2&2#G0 . ~10c!
3-4
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Finally, computing the second and fourth moments of
Gaussian distribution, we obtain the expansion in power
ries of e for the mean EMA conductance,

gm5G0@122e215e41O~e6!#. ~11!

Let us remark that only the second and fourth moments
the Gaussian probability distribution of heights were
volved in the previous calculation, and higher moments o
occur in higher order terms,O(e6). On the other hand, to
compute higher order terms in thee expansion of the elec
trical conductivity of the network would require a differe
approach, e.g., a perturbative weak-disorder expansion o
conductivity in terms of the moments of the probability d
tribution of bond conductances to directly solve Eq.~4!,
since EMA would no longer be an accurate approximat
@38#.

The previous result for the mean EMA conductancegm
shows an important feature of the fractures, in that the sa
result, up to second order ine, is obtained if those conduc
tances that are perpendicular to the mean flow are elimin
from the resistor network, i.e., it predicts aquasi-one-
dimensionalflow. The two-dimensional character of the ne
work only affects higher order terms,O(e4). In fact, deriving
from the previous equation the permeability of the fractu
we obtain,

k'
h2

12F122S sz~j!

j D 2G , ~12!

which is the same result as obtained in Ref.@7# for two-
dimensional fractures@see Eq.~29! in Ref. @7##.

In Fig. 2 we present the streamlines and the propaga
of an initially flat front of tracer particles in the velocity fiel
inside a self-affine fracture, where the flow field was av
aged over the gap of the fracture. That is, velocities alo
and perpendicular to the mean flow direction are average
the z direction over the aperture of the fracture, renderin
two-dimensional~2D! flow field uW (x,y). Then, using this
flow field, the streamlines and the propagation of a flat fr
of tracer particles initially located atx50 are computed. The
pressure gradient, and therefore the mean flow velocity,
along thex direction,^uW (x,y)&5Uxx̌. It can be seen that, a
predicted by the effective-medium approximation, late
fluctuations in velocity are small compared to the mean flo
and streamlines are approximately straight lines orien
along the direction of the imposed pressure difference. H
ever, there is a substantial difference with the 2D simu
tions, in that in the 2D case the gap-averaged mean fl
velocity is constant due to flux conservation, whereas in
3D case, as is clear from Fig. 2, fluctuations in the g
averaged velocity occur, and result in the broadening of
front of tracer particles as it travels through the fracture.

C. Permeability dependence on the fracture gap

Thus far we have obtained the relation between the siz
the quasilinear blocks composing our model fracture and
mean EMA conductance of the systemgm . To further obtain
02630
e
e-

f
-
y

he

n

e

ed

e

n

-
g
in
a

t

re

l
,
d
-
-
w
e
-
e

of
e

the dependence ofgm on the size of the fracture gap, it is firs
necessary to estimate the size of the unit blocksj in terms of
h. The linear size of the unit blocks was defined as the ch
acteristic length over which the channel formed by the t
fracture surfaces can be considered, insofar as flow is c
cerned, as a straight one. Such an approximation is v
when the vertical fluctuations of the fracture surface over
characteristic size of a unit block are a small fraction ofh.
However, the size of these blocks must not be too sm
compared toh for the Poiseuille approximation to the flow
inside the blocks to be valid. Therefore, we might expect
following relation to hold:

s~j!

h
5Cj<1, ~13!

whereCj will be treated as a fitting parameter in our nume
cal simulations, and consistency with the bound~13! will be
shown.

Using Eq. ~2!, we then obtain the small parametere in
terms ofh,

e.FCj

h

,G (z21)/z

. ~14!

@Note that, in the narrow fracture limit, the number of qu
silinear blocksNj is given byNj5(L/j)2.(L/h)2@1, and
we can make use of the EMA results.# Inserting the previous

FIG. 2. Streamlines~horizontal curves! and the propagation
from left to right, of an initially flat front of tracer particles~vertical
curves!, injected atx50, in the gap-averaged flow field. The im
posed pressure drop and thus the mean flow are along thex direc-
tion. The corresponding fracture surface is shown in Fig. 1. T
system size isL564 and the gap between fracture surfaces ish
58.
3-5
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GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E66, 026303 ~2002!
result into Eq.~11!, we obtain the dependence of the perm
ability of a three-dimensional self-affine fracture on the se
ration between surfaces,

k5
h2

12H 122FCj

h

,G2(z21)/z

15FCj

h

,G4(z21)/z

1OS FCj

h

,G6(z21)/zD J . ~15!

As mentioned earlier, this result is the same, through sec
order ine, as that for two-dimensional fractures@see Eq.~33!
in Ref. @7##. In order to test this result numerically, we fir
recast it in terms of the flow rate per unit widthq. In a
straight channel of heighth and lengthL with fixed pressure
drop P, the flow rate per unit width isq05h3P/12mL. In
view of Eq. ~15!, the relativedeviation fromq0 in a fracture
of gap sizeh is given by

q02q

q0
'2FCj

h

,G2(z21)/z

. ~16!

In Fig. 3 we compare numerical results for the relati
deviation of the flow rate per unit width from that in th
parallel plate model, (q02q)/q0, obtained in 2D and 3D
fractures. In both cases, the fracture surfaces~fracture curves
in the 2D case! have the same roughness exponent and
same characteristic length,, and hence both have on avera
the same amplitude of the vertical fluctuations in surfa
height. We also show in Fig. 3 the scaling relation given
Eq. ~16!, with the value ofCj obtained for two-dimensiona
fractures in Ref.@7#, Cj.0.1. As expected,Cj is a small
number consistent with the approximation of quasiline
blocks discussed above in connection with Eq.~13!. It can
also be seen that, in agreement with the effective med
prediction, both 2D and 3D results are very similar. As d

FIG. 3. Relative deviation of the flow rate per unit width fro
that of a straight channel as a function of the size of the vertical
h. We compare results from 2D and 3D simulations and from t
different sizesL of the system,L564 andL5256. The solid line is
a fit to the numerical results obtained in the largest 2D system
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cussed in Sec. IV B the difference between the 2D and
cases comes in the fourth order term,O(e4), and its correc-
tion is of relative magnitude 5e2/2. For the results presente
in Fig. 3 the largest value ofe is e;0.15 ~corresponding to
the smallest gap sizeh54), hence the relative magnitude o
the fourth order term is 5e2/2;0.05, which is consisten
with the observed similarity between the results obtained
2D and 3D cases. It can also be observed that the scalin
closer to the one predicted for the large systems (L5256),
probably due to large finite size effects present in the sma
systems.

D. Velocity fluctuations

In the preceding section we showed that the flow rate
unit width in 2D and 3D fractures, which have the sam
characteristic length,, is very similar and, in fact, both hav
the same scaling behavior as a function of the gap sizh.
However, as was discussed in Sec. IV B, there is an imp
tant feature of the flow field in 3D fractures that is n
present in two-dimensional simulations, that is, the prese
of velocity fluctuations even after the fluid velocity is ave
aged over the gap of the fracture. In Fig. 4 we present
fluctuations in the gap-averaged velocity, obtained by me
of the LBM in a fracture of sizeL564 and gap sizeh58.
The corresponding fracture surface is shown in Fig. 1 and
streamlines corresponding to the gap-averaged t
dimensional velocity field are plotted in Fig. 2.

Let us then investigate the magnitude of these fluctuati
in the gap-averaged velocity in the direction of the me
flow, i.e., dux5ux(x,y)2Ux . Previously, in Sec. IV A, we
calculated the mean EMA conductancegm in a self-

p
o

FIG. 4. Fluctuations in the gap-averaged velocity field. The fr
ture surface used in the numerical simulation is shown in Fig. 1,
the corresponding streamlines and front propagation are prese
in Fig. 2. The size of the system isL564 and the gap size ish
58.
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TRANSPORT IN ROUGH SELF-AFFINE FRACTURES PHYSICAL REVIEW E66, 026303 ~2002!
consistent way. In a similar way, we can estimate the fl
tuations in the gap-averaged velocity field in the direction
the mean flow, in terms of the variance of the extra press
drops dpab . In fact, we might think of the random extra
pressure-dropsdpab as the source of the velocity fluctua
tions. Let us mention that the same result would be obtai
if the fluctuations are computed in terms of the variance
the induced excess of fluid flux.

The variance of the induced extra pressure dropsdpab
across a random bond conductancegab oriented in the direc-
tion of the flow, is given by

^dp2&5~Dpm!2K Fgm2g

gm1gG2L , ~17!

whereDpm is the pressure drop in the uniform field solutio
across any bond conductance oriented along the pressur
ference.

Repeating now the procedure we followed to calculate
leading terms ofgm , we obtain

^dp2&5e4~Dpm!2^@x22^x2&#2&. ~18!

The previous is a general result, in that it is independen
the particular distribution of heights of the fracture surfa
Now, if we replace in this equation the second and fou
moments of the distribution by their normal values,^x2&
51 and^x4&53, we obtain

^dp2&52e4~Dpm!2. ~19!

Finally, using the fact that the relative fluctuations in t
pressure drop are equal to the relative fluctuations in
velocity, dp/Dpm5dux /Ux , we obtain the variance in th
gap-averaged velocityux normalized by its mean value,

d2[
su

2

Ux
2

5
^dux

2&

Ux
2

5
^dp2&

~Dpm!2
52e4. ~20!

In order to test this result numerically, let us rewrite t
previous equation in terms of the gap sizeh,

d5CfA2S h

, D (2z22)/z

, ~21!

where againCf is an adjustable parameter.
In Fig. 5 we show the numerical results obtained for t

normalized fluctuations of the gap-averaged velocity in
direction of the mean flow, as a function of the distanceh
between unshifted fracture surfaces. We find a good ag
ment with the predicted exponent, that is, the fitted expon
is 20.5860.08 and the predicted one is (222z)/z520.5.
The adjustable parameter is found to beCf52.160.9. Note
that Cj can be computed fromCf by means of Eq.~14!,
obtainingCj.0.2, which is similar to our previous determ
nation and is also consistent with the quasilinear approxi
tion given by Eq.~13!.

In Fig. 5 we also compare the fluctuations in the ga
averaged velocity in both directions, along and perpendic
to the mean flow. It can be observed that the scaling of
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fluctuations in the velocity perpendicular to the mean flow
also given by Eq.~21!, with a fitted exponent20.660.8.
The large uncertainty in the fitted exponent comes from
fact that the fluctuations perpendicular to the mean flow h
large variations between different fractures. Finally, it can
observed that fluctuations perpendicular to the mean flow
weaker than fluctuations parallel to the flow,dux;5 duy .
The approximately constant ratio between fluctuations al
and normal to the mean flow,dux /duy;5, is consistent with
the conservation of fluid flux. On the other hand, the mag
tude of the velocity fluctuations are clearly related to t
spatial correlations in the velocity field, and we will find a
analogous asymmetry in the autocorrelation function of
velocity fluctuations. Let us mention that similar results a
obtained within a macroscopic-continuum approach to
problem of transport in heterogeneous porous formatio
where the magnitude of the fluctuations in the direction
the mean flow are found to be three times larger than
perpendicular ones in two-dimensional systems@39#.

E. Fractures with shifted surfaces

Usually, when a rock is fractured its two matching su
faces are laterally shifted, that is, the displacement betw
them is not only vertical but also parallel to the mean pla
of the fracture. We shall now consider this situation, in whi
the upper surface of the fracture is laterally shifted by
vector dW 5(di ,d') lying in the mean plane of the fracture
However, we will only consider the case where the fractu
is distinctly open, that is, the two surfaces do not touch e
other at any point. In this case the aperture of the fractur
no longer constant but becomes a random function of
positionad(x,y)5z(x1dx ,y1dy)2z(x,y)1h. Let us con-
sider first, the case in which the lateral shift lies in the dire
tion of the mean flow, i.e.,d5di . In Ref.@7# we investigated
how such a lateral shift modifies the permeability of tw

FIG. 5. Relative magnitude of the mean velocity fluctuation
both parallel and perpendicular to the mean flow, as a function
the vertical separation between surfacesh. The mean flow is inx.
The size of the system isL5256.
3-7



tio

re
to
a
b
o
u
bi
re
p

te
m
en
r-

d
ra
d

on
uid
-

ra
ni
ra

t
e

s-
e-

eral

hift

tions
ifted

ce-

hift
a
ion

ear
s-
ne
tic
on
ral

gle

an

of

er
an

be
tion
,
er-

re-
the

r to

ef.
nd
the

m
p

ra
is
s
al
s
th
o

m

all
ent

re-

med

GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E66, 026303 ~2002!
dimensional fractures. We showed that, for large separa
between surfaces, such that the characteristic sizej of the
quasilinear blocks is much larger than the lateral shiftdi
!j, there is little change in the fracture geometry compa
to the unshifted case, and that the permeability is asymp
cally the same. On the other hand, when surfaces ne
touch at some point, the permeability will be dominated
the large pressure drop around this point, as the fluid is c
strained to flow through this narrow gap. Thus, as the s
faces become closer, we found a decrease in the permea
as compared to the unshifted case. The case of th
dimensional fractures is somewhat different. For large se
ration between surfaces@di!j; recall thatj5j(h)}h1/z# a
behavior similar to the unshifted case is again expec
since the change in the geometry of the fracture is asy
totically negligible, and therefore, the scaling relation giv
by Eq. ~16! should still apply. On the other hand, when su
faces are close to each other the fluid is no longer force
flow through the narrow gaps, where the minimum sepa
tion between surfaces occur, as in the 2D case. In three
mensions, the fluid can avoid these low permeability regi
by flowing around them. Thus, we might expect that the fl
rate per unit widthq is bounded by the behavior in two
dimensional fractures, that is, the upper bound ofq given by
the two-dimensional flow rate in the case without late
shift, and the lower-bound given by the flow rate per u
width in two-dimensional fractures with the same late
shift, qd5di

2d ,q,qd50
2d .

In Fig. 6 we present the relative correction to the flow ra
per unit width, (q02q)/q0, as a function of the distanc

FIG. 6. Relative deviation of the flow rate per unit width fro
that of a straight channel, as a function of the mean vertical se
ration h between surfaces. The solid line corresponds to a 2D f
ture formed by two complimentary surfaces that are simply d
placed in the vertical direction, and the dashed line correspond
results obtained when the upper surface of the 2D fracture is
shifted bydx516 in the direction of the mean flow. Solid circle
correspond to 3D simulations with no lateral shift between
matching surfaces. Open triangles and squares correspond t
upper surface shifted in the direction of the flow bydi516 and
perpendicular to it byd'516, respectively. The size of the syste
is L5256.
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between surfaces,h. In agreement with our previous discu
sion, the correction to the flow rate obtained for thre
dimensional fractures lies above the 2D case without lat
shift ~upper bound for the total flow rateq) and below the
two-dimensional results obtained for the same lateral s
d5di ~lower bound for the total flow rateq). It can also be
observed that, as we discussed earlier, for large separa
between surfaces all the results converge to the unsh
situation described by Eq.~16!.

In three dimensions, it is also possible to have a displa
ment perpendicular to the direction of the flow,d5d' . Let
us then investigate how the orientation of the lateral s
affects the permeability of the fracture. In Fig. 7 we show
schematic representation of the intersection of a small reg
of the fracture, approximated by two consecutive quasilin
blocks of sizej, with the plane that contains both the di
placement vectordW and the vector normal to the mean pla
of the fracture. Although extremely simplified, this schema
representation of the fracture shows the effect of the shift
the local permeability. It can be seen that, upon a late
displacement, the unshifted local permeability of a sin
linear block,k0, decreases,k2 , or increases,k1 , depending
on the orientation of the quasilinear block. Specifically,
increase~decrease! in the permeability corresponds tou
,0 (.0). Furthermore, when the shift is in the direction
the flow the two channels shown in Fig. 7 will be inseries,
i.e., approximately preserving the fluid flux. On the oth
hand, if the shift is in the direction perpendicular to the me
flow the two blocks will be inparallel, that is, having ap-
proximately the same end-to-end pressure drop. It can
shown that, this somehow naive model predicts a reduc
in the permeability upon a shift in the direction of the flow
and a smaller correction in the case where the shift is p
pendicular to the flow, in agreement with the results p
sented in Fig. 6. The same effect can be observed in
experimental work reported in Ref.@5#, where the flow rate
was observed to be larger in the direction perpendicula
the shift between the surfaces~see Fig. 4 in Ref.@5#!. It can
also be observed in the experimental work presented in R
@5# that the difference between the flow perpendicular a
parallel to the shift decreases as the separation between

a-
c-
-
to
so

e
the

FIG. 7. Schematic representation of the intersection of a sm
region of the fracture with a plane containing both the displacem

vector dW and the normal to the fracture surfaces. The depicted
gion contains two consecutive quasilinear blocks of sizej in the
unshifted and shifted cases. The local permeabilities are assu
equal in the unshifted casek5k0.
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FIG. 8. The gap-averaged
velocity field du(x,y)5u(x,y)

2Uxx̌ is presented in three differ
ent cases. On the top is the ca
with no lateral shift between the
surfaces of the fracture. On th
bottom left we show the cased
5di516, and the cased5d'

516 is shown on the bottom-righ
corner. In all cases the vertica
separation between surfaces ish
516.
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surfaces is increased, which is also in agreement with
results~see Fig. 5 in Ref.@5#!. Let us mention that, in ou
simulations, the largest contrast betweenq' andqi , obtained
for the smallest gap sizeh512, is found to beq' /qi
;1.24.

In Fig. 8 we show the effect of the orientation of the sh
on the gap-averaged velocity fluctuations,du(x,y)5u(x,y)
2Uxx̌, where the mean flow is subtracted in order to ma
nify the fluctuations in the local velocity. The three differe
cases presented in Fig. 8,d50, d5di , andd5d' , have the
same vertical gaph, and correspond to the same fractu
~same self-affine surface!. In the case where the lateral sh
is perpendicular to the flowd5d' , flow channels oriented
in the direction of the imposed pressure drop are appar
whereas these oriented channels are not present whe
shift is along the flow directiond5di .

V. TRACER DISPERSION

Several tracer-dispersion mechanisms are present in
transport of fluids through porous media and the relative
portance of these mechanisms strongly depends on the m
flow velocity @2#. Let us briefly review here the differen
dispersion mechanisms and their dependence on the P´clet
number Pe5hUx /Dm , whereDm is the molecular diffusiv-
ity, h is the aperture of the fractures, andUx is the mean flow
velocity. In the case of two-dimensional fractures there
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only two contributions to tracer dispersion, molecular diff
sion, which dominates at very low flow rates, Pe!1, and is
independent of Pe,O(Pe0), and Taylor dispersion, which is
O(Pe2) and therefore becomes dominant at high flow ra
Pe@1 @40–42#. On the other hand, in three-dimension
fractures another mechanism comes into play, that is,
presence of spatial fluctuations in the velocity field. As d
cussed in the preceding section, the effective aperture of
fracture is not constant, even in the case when the
complementary surfaces have no relative lateral shift, wh
gives rise to velocity fluctuations, as it was shown in S
IV D. Moreover, in contrast with the two-dimensional cas
these velocity fluctuations are present even after the lo
velocity is averaged over the gap of the fracture. One of
main effects of the spatial fluctuations in the fluid velocity
that an initially flat invasion front of tracer particles wi
become increasingly distorted, resulting in its broadening
time, as it can be observed in Fig. 2. This so induced g
metric dispersion of tracer particles has been reported in
vious studies of dispersion in fractures@15,16# and is com-
pletely analogous to that observed in three-dimensio
porous media@43#. However, let us note an important diffe
ence between previous studies and the present work. In R
@15,16# the analysis is based on the lubrication or Reyno
approximation, where a Poiseuille flow, with a parabolic v
locity profile across the aperture, is assumed to be loc
valid everywhere in the fracture. In this case, there are
3-9
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GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E66, 026303 ~2002!
fluctuations in the local velocity in the absence of fluctu
tions in the local aperture of the fractures, which is in fact
case when there is no lateral shift between surfaces. On
other hand, we consider the case of narrow fractures and
lubrication approximation is not valid~at least in its simples
version!. In fact, in our framework, geometric dispersion e
fects are present even in the absence of any lateral shif
tween surfaces, due to variations in the effective aperture
induce spatial fluctuations in the velocity field. This situati
was investigated in recent experiments, where the broa
ing and dispersive behavior of an invasion front of trac
particles has been observed even in the case of no la
shift between complementary surfaces@5#.

In view of our previous discussion, we shall focus on ho
the fluctuations in the gap-averaged velocity affect the d
persion of the tracer particles. The molecular and Taylor c
tributions to the dispersion of tracer particles were discus
in our previous work, in the two-dimensional case, and th
are not expected to be very sensitive to the fluctuations in
gap-averaged flow velocity, in that the molecular diffusion
clearly independent of the velocity field and the Taylor d
persion is dominated by the gradients in velocity in the
rection perpendicular to the fracture surface@42#. Then, if we
only account for the geometric contribution to the dispers
of tracer particles the problem can be immensely simplifi
In fact, instead of working with the three-dimensional velo
ity field we can use the two-dimensional gap-averaged
locity field u(x,y). The range in which the geometric dispe
sion is the dominant mechanism contributing to t
dispersion of tracer particles corresponds to intermediate´-
clet numbers~intermediate velocities!, and the presence o
such a range of Pe´clet numbers in self-affine fractures will b
discussed in detail at the end of this section~see Sec. V C!.

A. Velocity autocorrelation function

The mean-square displacement in the flow direction
be expressed in terms of the velocity autocorrelation func
in time R̃i(t) ~Ref. @44#, p. 576!,

Š~x2^x&!2
‹t52E

0

t

dt ~ t2t!^@ux„X~0!,Y~0!…2Ux#

3@ux„X~t!,Y~t!…2Ux#&

52E
0

t

dt ~ t2t!R̃i~t!, ~22!

wherex5X(t) andy5Y(t) are the trajectories of the trace
particles incorporating the velocity fluctuations, and the
erage is anensembleaverage over different realizations o
the problem. Furthermore, in Sec. IV D we showed that
velocity field is approximately one dimensional, i.e., late
fluctuations are small compared to the mean veloc
(du/Ux,0.05). The velocity autocorrelation function i
time can then be related to the spatial velocity autocorr
tion function, specifically to the marginal spatial autocor
lation function in the direction of the mean flowx averaged
over the y direction, Ri(x)5^@ux(x8,y8)2Ux#@ux(x8
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1x,y8)2Ux#&, by transforming time into position through th
mean flow velocity,x5X(t)2X(0)5Uxt. In Fig. 9 we show
the equivalence betweenRi and R̃i , that is, Ri(x)
5R̃i(x/Ux). Then, we can estimate the mean-square d
placement and calculate the dispersion coefficient in term
the spatial correlation function,

DH5
1

Ux
E

0

`

Ri~j!dj. ~23!

From the previous equation it is clear that the dispers
coefficient depends on both the magnitude of the fluctuati
and the length scale of the velocity correlations. Therefo
we introduce the characteristic correlation length of the
locity fluctuations,l c , defined as

l c5
1

su
2E0

`

Ri~x!dx, ~24!

where su is the rms dispersion in velocity,su
2

5^@ux(x8,y8)2Ux#
2&. The velocity correlation lengthl c

measures the typical length over which fluctuations in vel
ity are correlated and, similarly, we can define a correlat
time tc5 l c /Ux , which measures the characteristic tim
scale over which fluctuations in velocity remain correlate
Let us remark thatl c is not necessarily equal to the prev
ously defined linear size of the quasilinear blocksj, a fact
that becomes clear upon consideration of the 2D case, w
one can define a typical sizej over which the channe
formed by the opposing fracture surfaces can be consid
straight, even though there are no fluctuations in the m
velocity and, therefore, the correlation lengthl c cannot be
defined.

In Fig. 10 we present the spatial velocity autocorrelati
function in both the direction of the flow,Ri , and perpen-
dicular to it, R' , for a system of sizeL5512 and gap size

FIG. 9. Spatial velocity autocorrelation functionRi(x) and its

comparison withR̃i(x/Ux), both normalized bysu
2 . The results

correspond to a system of sizeL5256 with the fracture surface
separated byh58.
3-10
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TRANSPORT IN ROUGH SELF-AFFINE FRACTURES PHYSICAL REVIEW E66, 026303 ~2002!
h58. It is clear that the spatial correlations in the directi
perpendicular to the mean flow decay faster than along
flow direction, which is consistent with our previous res
concerning the magnitude of the fluctuations, in that veloc
fluctuations parallel to the mean flow are larger than fluct
tions perpendicular to it~see Sec. IV D!. It can also be ob-
served that both correlation functions do not vanish at lo
distances as it should be in an infinite system. In fact,
velocity fluctuations present a positive correlation in the
rection of the flow and are anticorrelated in the perpendicu
direction. This nonvanishing correlation can be explained
terms of mass conservation and finite size effects. The g
averaged velocityux integrated over a line perpendicular
the mean flow~from y50 to y5L) is equal to the total flow
rateQ divided by the gap sizeh, and it is a conserved quan
tity all along the system. Therefore, local fluctuations in t
velocity ux should compensate themselves, giving rise
negative spatial correlations inux along the direction perpen
dicular to the flow. This same combination of effects, that
mass conservation and the finite size of the system, lead
the observed positive correlation in the direction of the flo
However, this nonvanishing correlation should decrease
the size of the system increases, as it can be observed in
results by comparing Fig. 9, which corresponds to a sys
of sizeL5256, with Fig. 10, which corresponds toL5512.
A similar reduction of the asymptotic correlation with syste
size is observed in the fluctuations perpendicular to the m
flow. The negative spatial correlation in the velocity fie
along the direction perpendicular to the mean flow, and
fact that the velocity fluctuations decay faster in this dire
tion, are also found in the continuum approach to transpo
heterogeneous porous media@45#.

B. Dependence of dispersion on the gap size

In the Stokes flow approximation (Re50), the flow field
becomes independent of the magnitude of the flow rate,Ux

FIG. 10. Spatial velocity autocorrelation function, of the velo
ity component in the direction of the flowux2Ux , in both the
direction of the flowRi and perpendicular to itR' . The autocorre-
lation functions are normalized bysu

2 . The results correspond to
system of sizeL5512 and fracture surfaces separated byh58.
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being just a scaling factor@46#. Therefore, the dimensionles
parameterd5su /Ux , and the correlation lengthl c , are in-
dependent ofUx . Then, rewriting Eq.~23! we obtain,

DH5d2l cUx , ~25!

which explicitly shows the linear dependence of the disp
sion coefficient onUx . Furthermore, the dispersion of a
initially flat front of tracer particles at a given distance fro
the injection point is independent ofUx . Consider the situ-
ation in which a front of tracer particles is injected at t
inlet section of a fracture (x50). The dispersion of the trace
front, measured as the mean square displacement of
tracer particles, is then given by

^~x2^x&!2& t52DHt52d2l cUxt52d2l c^x& t , ~26!

and it is clear that the dispersion of the front, at a fix
distancex5^x& from the inlet sectionx50, is independent
of Ux . In fact, it only depends onl D5d2 l c , wherel D is the
dispersion length of the fracture@47#. This fact, that the dis-
persion of the front is independent of the mean flow veloc
was observed in the experiments presented in Ref.@5#, where
it is shown that the front shape depends on the injected
ume but not on the flow rate,~see Fig. 2 in Ref.@5#!.

Let us then investigate the dependence of the disper
length l D on the gap sizeh, accounting the dependence onh
of both the relative magnitude of the fluctuationsd and the
correlation lengthl c .

The dependence ofd on the gap size was discussed
Sec. IV D, where we showed that

d2}h24(12z)/z. ~27!

On the other hand, in Fig. 11 we show the correlationl c
as a function of the gap size, computed from our numer
simulations using Eq.~24!, where it can be seen that th
correlation length increases with the gap sizeh. Let us men-
tion that, in order to minimize finite-size effects, as the p
viously discussed nonvanishing spatial correlations in the
locity fluctuations, present in both parallel and transve
directions, the computation ofl c was performed in the larges
system we could simulate, that is,L51024.

The observed decrease in the spatial correlations of
velocity field, as the surfaces become closer, might be att
uted to a ‘‘screening’’ mechanism, that is, ash decreases the
fluctuations in the velocity field become stronger and
velocity tends to decorrelate over a shorter distance.
analogous effect occurs in porous media flows, where a
locity disturbance from a point force decays with a char
teristic ‘‘screening’’ length proportional to the square root
the permeability ~as seen from the Brinkman equatio
@48,49#!, which in our case is proportional toh ~the leading
order term!.

As discussed earlier, the dependence ofl D on h has two
opposite contributions. On one hand, the magnitude of
velocity fluctuations,d, which decreases with increasingh
and, on the other hand, the correlation length of the velo
3-11
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GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E66, 026303 ~2002!
fluctuations,l c , which becomes larger ash increases. We
found that, as a result of these opposite effects, the disper
length decreases as the gap size is increased, as it can be
in Fig. 12, where we show the dispersion lengthl D as a
function of the gap sizeh. This result is in agreement with
the qualitative behavior observed in Ref.@5#, where the in-
vasion front of tracer particles becomes smoother as the
of the fracture is increased~see Fig. 5 in Ref.@5#!.

Finally, note that underlying the previous discussion is
assumption that the spatial correlations in the velocity fi
decay fast enough so that the integral in Eq.~23! is finite
and, therefore, the broadening of the tracer front beco
diffusive at length scales larger than the correlation len
l c . Analogously, the dispersion of the front is expected to
diffusive at time scales larger than the correlation timetc
5 l c /Ux . On the other hand, in previous studies of disp
sion in self-affine fractures, the slow decay in the spa

FIG. 11. Correlation lengthl c as a function of the gap sizeh.
The size of the system isL51024.

FIG. 12. Dispersion lengthl D as a function of the gap sizeh.
The size of the simulated fractures isL51024.
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correlations of the velocity field was proved to indu
anomalous dispersion. However, those studies investig
the dispersion of tracer in the lubrication regime, whe
mean velocity strictly follows the fluctuations in the apertu
of the fracture and long-range correlations should be
pected. On the contrary, the lubrication approximation is
valid in the case ofnarrow fractures, and fluctuations in the
velocity field are due mainly to the locally random orient
tion of the fracture channel. In Fig. 13 we present the me
square displacement of an invasion front of tracer particle
a function of time. The vertical line shows the correlatio
time, tc , after which a diffusive behavior should be e
pected. It can be observed that the initial behavior cor
sponds to the highly correlated motion of the particles and
fact, the numerical results closely follows the solid line th
is given by^(Dx)2&5su

2t2, which is the limiting behavior of
Eq. ~22! for t→0. On the other hand, at times larger thantc
the velocity begins to decorrelate from its previous valu
and the dispersion of the front deviates from the quadr
behavior. Moreover, the lower solid line is given by a line
fit to the mean square displacement, in the range of tim
0.2<tUx /L<0.75. The fitted value for the dispersion coe
ficient is DH5(2.760.7)31025, in agreement with the ex
pected value calculated from Eq.~25!, DH5(2.060.6)
31025. However, the size of the system is not large enou
to observe a large range where the linear, dispersive, reg
is valid, and therefore the determination of the dispers
coefficient is not accurate. Nevertheless, the mean sq

FIG. 13. Log-log plot of the mean-square displacement of
initially flat front of tracer of particles as a function of time. Th
vertical dashed line corresponds to the dimensionless correla
time tc5 l c /L above which a diffusive behavior is expected. T
upper solid line corresponds to the initial highly correlated mot
of the tracer particles,̂(Dx)2&5su

2t2. The lower solid line corre-
sponds to the best fit of the linear regime, with a dispersion coe
cientDH5(2.760.7)31025. @The observed departure from a line
behavior at early times is due to the constant term of the fitted lin
regime, (Dx) t50

2 ;215.# The results correspond to simulation in
system withL51024 and gap sizeh58, and were averaged ove
four different realizations. The time is in units of the mean tran
time of the mediumT5L/Ux .
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displacement closely follows Eq.~22! at all times and, at
large enough times, it clearly grows at a much slower r
than in the anomalous regime observed in Refs.@15,16#,
where (Dx)2}t2z.

C. Tracer dispersion in the three-dimensional velocity field
and tracer transit time distributions

The previous analysis of the dispersion problem w
based on the assumption that the leading contribution to
dispersion of tracer particles comes from the spatial fluct
tions in the gap-averaged velocity field, which allowed us
map the problem to a two-dimensional one. This approxim
tion is only valid for values of the Pe´clet numbers such tha
both molecular and Taylor dispersion are negligible@15#. As
we shall discuss, there might not be such a range of Pe´clet
numbers, depending on the geometric properties of the f
ture.

The geometric contribution to the dispersion coefficie
given by Eq.~25!, is larger than the molecular diffusion term
whenever the following inequality holds:

DH5d2l cUx@Dm⇒Pe@
1

b
, b5d2

l c

h
. ~28!

On the other hand, we might expect that Taylor-like d
persion becomes dominant at high flow rates, due to the p
ence of stagnant zones within the fracture. In that cas
heuristic estimate of the range of Pe´clet numbers where the
geometric contribution generates a larger spreading of
tracer front than that induced by the presence of stagn
zones is given by

DH5d2l cUx@DT5
h2Ux

2

Dm
⇒Pe!b. ~29!

Then, combining the previous two equations, it is clear t
the geometric regime exists only for

b5d2
l c

h
@1. ~30!

That is, the product between the magnitude of the fluct
tions in velocity and the characteristic length over whi
such fluctuations remain correlated should be large. Th
fore, the existence of such a range of Pe´clet numbers in
which the dispersion of tracer particles due to the veloc
fluctuations is dominant, would depend on the geometr
properties of the fracture. In view of our previous results,
particular, the dependence ofd andl c on h, we might expect
that the geometric dispersion would be dominant in the li
of narrow fractures, i.e., large fluctuations of the surfac
height and small separation between fracture surfaces
terms of the small parametere5sz(j)/j, the geometric con-
tribution will be asymptotically dominant, for any value o
the Péclet number, in the limite→0. On the other hand, a
the gap of the fracture is increased, the geometric contr
tion will be asymptotically negligible in the limith→`.

Finally, let us consider the transit time distribution
tracer particles at high injection rates. Previously, we h
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analyzed the fully developed dispersion regime, which
valid at low injection rates or large fractures. Specifically,
us measure the transit time of tracer particles, launched a
inlet section of the fracture, that arrive at the cross sect
situated at a distanceDX. If T is the mean transit time of the
tracer particles,T5DX/Ux , andtD is the characteristic cor
relation time of the tracer velocity, then the Gaussian disp
sive behavior would be valid forT@tD . On the other hand
when the injection rate increases and the transit time
comesT&tD , the transit time distribution deviates from
Gaussian distributions and exponential tails are generally
served in flow through porous media@15,50,51#.

In the flow through fractures, as well as in the flow in
Hele-Shaw cell, the correlation time of the velocity is give
by the diffusive time across the gap. For transit timesT
&tD the tracer particles do not have time to diffuse acro
the gap and their velocity will remain correlated during th
convective motion throughout the system. In this case, s
nant or low-velocity zones have the effect of retarding t
tracer particles, and give rise to the exponential tails, due
the fact that diffusive motion is the only mechanism ava
able for the particles to leave these stagnant zones@52#. In
Fig. 14 we present the tracer transit time distribution
three different ratios between the transit and the correla
times,T/tD51/2, 1, and 5.0, and for three different system
Hele-Shaw cells, 2D and 3D fractures. First of all, it can
observed that, forT/tD@1, all the transit time distributions
are Gaussian and very similar to each other. On the o
hand, as the transit times becomesT/tD&1, the distributions
deviate from a Gaussian curve, becoming increasingly as
metric. It can also be observed that both two- and thr
dimensional fractures present slightly more persistent t
than in the Hele-Shaw case. The similarity between the
tribution in 2D and 3D fractures is in total agreement w
our previous results, where the velocity field for thre

FIG. 14. Transit time distribution of tracer particles for thre
different ratios between the transit and correlation times,T/tD

51/2, 1, and 5.0, and for three different systems, a Hele-Shaw
2D and 3D fractures. The simulation correspond to a system of
L5512, gap sizeh516 and the transit time distributions are me
sured at a distanceDX5400 from the injection point.
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dimensional fractures was shown to be quasi-tw
dimensional in the absence of a lateral shift between
surfaces of the fracture. On the other hand, we feel that
small difference between the transit time distribution in se
affine fractures and in the Hele-Shaw cell might be related
the presence of low-velocity zones in the fractures, which
not present in a straight channel. This enhancement of
long-time tails due to the presence of low-velocity zon
should be more evident in the presence of a lateral shift

In Fig. 15 we present the transit time distribution of trac
particles, in the same three different cases as in Fig. 14,
in this case the upper surface of the fractures is later
shifted in the direction of the flow byd5dx516. First of all,
it can be observed that, as in the unshifted case present
Fig. 14, all distributions are Gaussian and very similar
each other for large transit times,T/tD55.0. On the other
hand, for much smaller transit times,T/tD50.2, a long-time
tail develops, in particular in the case of two-dimension
fractures. As shown in Sec. IV E, two-dimensional fractu
present lower permeabilities than the three-dimensional o
in the presence of a lateral shift, due to the fact that in the
case the fluid can avoid low permeability regions by flowi
around them. Therefore, the presence of low-velocity zo
is more important in 2D and thereby the effect of these zo
on the long-time behavior of the transit time distribution b
comes more important.

VI. SUMMARY AND CONCLUSIONS

Transport properties of three-dimensional self-affi
rough fractures were investigated by means of the effect
medium approximation and numerical simulations using
Lattice-Boltzmann method. The numerical simulations ve
fied the scaling behavior predicted by the effective-medi

FIG. 15. Transit time distribution of tracer particles for tw
different ratios between the transit and correlation times,T/tD

51/2 and 5.0, and for three different systems, a Hele-Shaw cell
and 3D fractures with opposite surfaces laterally displaced bd
5dx516. The simulation corresponds to a system of sizeL5512,
gap sizeh516 and the transit time distributions are measured a
distanceDX5400 from the injection point.
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approach and, furthermore, allowed us to compute impor
transport parameters of the fractures, such as the dispe
length, and their dependence on the aperture. Two diffe
cases were investigated, the unshifted case, in which the
matching surfaces of the fracture are displaced in the di
tion normal to the mean plane, and the shifted one, in wh
the upper surface is laterally displaced either in the direct
of the flow or perpendicular to it.

First, we modeled the fractures by a regular tw
dimensional square lattice of bond conductances, and the
tice spacing and the distribution of bond conductivities we
related to the geometrical properties of the fracture. Spe
cally, we related the lattice spacing to the length scale o
which fluctuations in the surface height are small compa
to the aperture of the fracture, and it was determined in te
of the roughness exponent, the characteristic length and
aperture of the fractures. Then, adapting some well-kno
results obtained by means of the effective-medium appro
mation in the analogous random-resistor network, we
tained the permeability of the fracture and its dependence
the aperture in the limit ofnarrow fractures. We showed that
the permeability is, up to second order in a perturbative
rameter, the same as in two-dimensional fractures. T
quasi-two-dimensional behavior of the transport of flui
through self-affine fractures was confirmed by the numer
computations of the streamlines, which presented very sm
lateral fluctuations. A similar behavior was also observed
the experimental work reported in Ref.@5#, in that the struc-
ture developed by the invasion front of tracer particles p
sents very small fluctuations perpendicular to the mean fl
in the unshifted case@see Fig. 4~a! in Ref. @5##. Moreover, the
scaling behavior of the permeability with the aperture w
verified by our numerical results and, in addition to that,
showed that it is in agreement with numerical results p
formed in two-dimensional fractures. However, we also d
cussed an important difference between the 3D and 2D ca
namely, the presence of fluctuations in the gap-averaged
velocity in three-dimensional fractures, and we were furth
able to predict the scaling behavior of the velocity fluctu
tions in the direction of the mean flow by means of t
effective-medium approximation. The numerical simulatio
were in agreement with this result and, furthermore, show
that the velocity fluctuations in the direction perpendicular
the flow have the same scaling but are approximately th
times smaller in magnitude. Similar results were obtained
the continuum approach to transport in heterogeneous po
media @39,45#. Finally, we investigated the case of shifte
surfaces and showed that the permeability of the fractu
strongly depends on the orientation of the shift, which
either in the direction of the imposed pressure drop or p
pendicular to it, in the limit ofnarrow fractures. Further-
more, by means of numerical simulations we showed that
flow rate per unit width in three-dimensional fractures
bounded by the two-dimensional results. Specifically, fo
relative shift in the direction perpendicular to the mean flo
the permeability is slightly affected and lies above the p
meability of two-dimensional fractures. On the other han
when the upper surface is shifted in the direction of the fl
the permeability is largely reduced, but not as much as in

D

a
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two-dimensional case. The latter is due to the fact tha
three-dimensional fractures, in contrast with the tw
dimensional case, the fluid can avoid low-permeability
gions by flowing around them. We also presented a sim
fied representation of a local region of the fracture th
although naive in character, captures the effect of the or
tation of the shift on the permeability of the fracture. T
same effect is observed in experiments, in that the flow
is larger in the direction perpendicular to the relative sh
between surfaces~see Fig. 4 in Ref.@5#!.

In the second part of this work, we investigated the d
persion of tracer particles in self-affine fractures. Spec
cally, we analyzed the dependence of the geometric co
bution to the dispersion process on the aperture of
fracture. First, we simplified the analysis by mapping t
problem to the dispersion of tracer particles in the tw
dimensional gap-averaged velocity field. We then dist
guished between the two contributions to the dispersion
efficient, namely, the relative magnitude of the veloc
fluctuations and their correlation length. We observed tha
agreement with previous studies@39,45#, the autocorrelation
function of the velocity fluctuations decays faster in the
rection perpendicular to the mean flow. Finally, we show
that, even though the correlation length increases with
aperture, the dispersion coefficient is asymptotically smal
the limit of wide fractures. The latter effect is also observ
in the experiments presented in Ref.@5# where it was shown
that the invasion front of tracer particles becomes incre
ingly smooth as the aperture of the fracture is increased

Finally, we investigated the dispersion of tracer partic
in the fully three-dimensional velocity field inside the fra
tures. Specifically, we discussed the range of Pe´clet numbers
in which the geometric contribution to dispersion is expec
to be dominant and we showed that, depending on the g
-

.

.
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metric properties of the fracture, there might be no su
range of Pe´clet numbers. However, we found that the ge
metric dispersion is dominant in the limit ofnarrow frac-
tures, and in general is dominant for dispersion lengths lar
than the aperture of the fractures. We also investigated
transit time distribution of tracer particles, and their depe
dence on the mean transit time. We showed that, as the m
transit time is reduced and it becomes comparable to
smaller than the correlation time of the tracer velocity, t
transit time distribution becomes increasingly non-Gauss
developing long-time tails due to the presence of lo
velocity zones where the only mechanism for tracer transp
is molecular diffusion. In general, the transit time distrib
tions are very similar to the case of tracer dispersion in
Hele-Shaw cell, except for the case of two-dimensional fr
tures shifted in the direction of the flow, which present t
largest tails probably due to an enhancement of the lo
velocity zones by the relative shift between surfaces. In fa
in agreement with the latter results, the two-dimensio
fractures, with the upper surface shifted in the direction
the flow, were shown to have the lowest permeability.
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