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Transport in rough self-affine fractures
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Transport properties of three-dimensional self-affine rough fractures are studied by means of an effective-
medium analysis and numerical simulations using the Lattice-Boltzmann method. The numerical results show
that the effective-medium approximation predicts the right scaling behavior of the permeability and of the
velocity fluctuations, in terms of the aperture of the fracture, the roughness exponent, and the characteristic
length of the fracture surfaces, in the limit of small separation between surfaces. The permeability of the
fractures is also investigated as a function of the normal and lateral relative displacements between surfaces,
and it is shown that it can be bounded by the permeability of two-dimensional fractures. The development of
channel-like structures in the velocity field is also numerically investigated for different relative displacements
between surfaces. Finally, the dispersion of tracer particles in the velocity field of the fractures is investigated
by analytic and numerical methods. The asymptotic dominant role of the geometric dispersion, due to velocity
fluctuations and their spatial correlations, is shown in the limit of very small separation between fracture
surfaces.
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[. INTRODUCTION even at low Reynolds numbers. In fact, more careful analysis
showed, in recent years, that geological fractures present

The transport of fluids in geological media plays a domi-highly spatially correlated, self-affine surfaces, with a rough-
nant role in different applications such as subsurface hydrolness exponent=0.8 surprisingly constant for different
ogy, hydrocarbon recovery, and waste storage, and the tranggpes of rocks whether naturally or artificially fractured
port properties of such media involves a combination of fluid[5,8—11. In view of these results, theoretical and numerical
flow at different length scales. First, there is transport at thestudies introduced the complex geometry of the fractures in
microscopic level through the pore space of the rock itselforder to calculate the transport properties of the system.
Then, at macroscopic length scales, the flow through fracHowever, the majority of these studies assumed that the Rey-
tures is, in most cases, the dominant transport mechanismolds(lubrication approximation is valid so that the velocity
Finally, at even larger length scales, the dominant convectivéield is given by a Poiseuille flow everywhere, with a para-
transport involves the flow through fracture networks. Thebolic velocity profile across the aperture and in the direction
first case has received considerable attention and is relativebf the mean flow{6,11-17. While this approximation has
well understood and, in fact, it can be placed within theproven very useful in the case of uncorrelated opposing frac-
framework of transport in porous media—3|. On the other ture surfacegfracturefaults) [11,17), it clearly fails to cap-
hand, understanding the flow through single fractures isure the roughness effects in the case we consider here—
clearly a prerequisite to the investigation or modeling ofperfectly mated fracture surfaces in which the aperture is
more complex cases such as the flow through macroscopaonstant(fracture joints). In the lubrication approximation,
fracture networks. Another key transport process present iour rough fractures are equivalent to a channel with a
geological systems, the transport of tracer particles carriedonstant-width gap, without the vertical components of the
by the fluid also requires an adequate understanding of thiguid velocity which are particularly important in the limit of
flow properties, in particular, the statistical properties of thenarrow fractures where the roughness amplitude is large
velocity field. compared to the aperture.

Fractures have often been modeled as simple Hele-Shaw In a previous worK 7], we proposed a different approach
cells, with a cubic relation between the volumetric flow ratein which a two-dimensional fracture is divided into approxi-
and the average aperture of the fracture, usually focusingrately straight segments with varying orientation angles.
most of the effort on investigating the flow through a mac-This approach allowed us to obtain the correction to the flow
roscopic network of such fractures. However, although aate due to surface roughness as a function of the aperture
typical fractured rock surface appears fairly smooth, asidend was validated by our numerical simulatiof&.similar
from some random roughness, suggesting that Poiseuillapproach was used by Oron and Berkowitz to analyze the
flow in a straight channel is the appropriate model of flow,case of fractures with contacts between surfat8s) In this
laboratory experimentg!,5] and numerical simulatior$,7]  work, we shall further investigate the case of narrow frac-
indicate that this classical view of a rock fracture as atures, extending the results to three-dimensional fractures.
straight channel is not adequate to describe the fluid floWWe shall see that it is possible to obtain analytic expressions

for the permeability of the fracture and for the velocity fluc-
tuations, in the limit of narrow fractures, by means of the
*Electronic address: drazer@mailaps.org effective-medium approximation. We shall also investigate
TElectronic address: koplik@sci.ccny.cuny.edu the dispersion of tracer particles advected by the flow field

1063-651X/2002/6@)/02630316)/$20.00 66 026303-1 ©2002 The American Physical Society



GERMAN DRAZER AND JOEL KOPLIK PHYSICAL REVIEW E66, 026303 (2002

within the fracture and its dependence on the aperture.

We shall first, in Sec. Il, briefly discuss some basic defi-
nitions associated with self-affine surfaces and present ou
model of fractures as the gap between two perfectly match-
ing self-affine surfaces. The Lattice-Boltzmann method, usec
to numerically simulate the fluid flow through the fractures,

) . i . z
is briefly presented in Sec. lll. Then, in Sec. IV we shall o
investigate the permeability by means of the effective- T _'f

K . . . AN
medium approximation and compare the results with our nu- H TR,

. . . . . . 0','.' %“ 60
merical results. Finally, in Sec. V we investigate the disper- Q0

sion of tracer particles convected by the flow field within the
fracture and its dependence on the aperture of the fracture.

Il. SELF-AFFINE FRACTURE SURFACES

Following the work of Mandelbrdt19], the application of
the fractal model to describe surface topography has becom
widespread as it has been shown in several experiments thi
fracture surfaces, with various materials and fracturing meth- &

ods, exhibit statistically self-affine scaling properties. Par- g, 1. Example of a numerically generated self-affine surface,

tiqularly relevant to our work are the expgriments _performed,\,ith roughness exponet=0.8, characteristic length=3x 103,
with naturally fractured rock$20—23. This self-affine de-  and sizel X L = 64x 64.

scription of fracture surfaces substantially improves the char-

acterization of rough surfaces in terms of surface mean pa- 20
rameters such as the root-mean-squames) roughness, rms az(r)=<[z(7)—z(7 +r_)]2)=€2(£) _ 2
slope, and density of peaks, in that it provides the scaling z 4

behavior of these parameters, which are not intrinsic proper-
ties of the surface but strongly depend on the sample size
[20,21).

We consider a rock surface without overhan@],
whose height is given by a single-valued functipfx,y),
with the coordinatex andy lying in the mean plane of the
fracture. Self-affine surfaces display scale invariance wit . : PR .
different dilation ratios along different spatial directions. hot consider cases in whichis within the simulated range
Here we consider disordered media, so these scaling IaV\%f length scales.

: . . The self-affine surfaces are generated by a two-
apply only in an ensemble or spatial average sense. Experi- . o . .
PRy on'y P g P dimensional generalization of the Fourier synthesis method

ment indicates that for many materials isotropy can be as- ™~ : .

sumed in the mean plane. Therefore, the surface height is eV|o_u_st used by us for _the generation of self-affln_e curves

homogeneous function, of degréeon the mean plane co- - Initially, an LxL matrix, where ea_ch element will rep-

ordinates24], resent_ the height of tr_le dlscret_e version of the fracture sur-
face, is generated with statistically independent, Gaussian
distributed, random numbers. Then, the Fourier transform of

Z(X,Y)=N"¢z(AX,\Y), (1)  this initial random matrix is modulated by a power-law high-

wave-numbers filter that introduces height-to-height correla-

where ¢ is usually referred to as the roughness or Hursttions[26]. Finally, the whole surface is rescaled in order to

exponen{19]. get the desired characteristic lendthin this work we shall

In studies with several different types of fractured rocksyse /=0.8 and¢=3x10"3. This numerical method gener-
the roughness exponent is found to be clos¢-®.8, inde-  ates homogeneous and isotropic surfaces, and is preferable
pendent of the material and of the fracture md@e8— instead of other numerical methods such as the random ad-
11,21,22. dition algorithm(for a discussion of this point see R§27],

The Hurst exponent is not enough to describe a self-affin&ec. v A). The surfaces generated are periodix andy, as
surface, and, in addition, the amplitude of the fluctuations iris shown in Fig. 1, and, although the periodicity is not physi-
the height of the surface is to be specified. This amplitude otally important it has some computational advantages when
the fluctuations is usually expressed in terms of the characalculating the flow field using periodic boundary conditions.
teristic length¢, which is the horizontal distance over which We shall model fractures as the gap between a self-affine
fluctuations in height have a rms slope of oo€(€)=¢2.  surface and its replica, which is translated by a fixed distance
Using the self-affine scaling law we can then obtain the varih in the direction normal to the mean plane of the surface.
ance of the fluctuations in surface height, over any lengttHowever, during the fracturing process of the rock, the op-
scaler, in terms of the roughness expongnand the char- posite matching surfaces might experience a lateral shift, in
acteristic lengtht, addition to the vertical displacement. Therefore, we shall

In principle, the characteristic length can take any
value, however, for fractured rocks it is usually found to be
very small, and to lie either below the accessible range of
length scales in the experiment<€0.5 wm [21]) or below
hthe self-affine range of the surfajg25]. Therefore, we shall
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also consider this situation by introducing a lateral shift tomean flow direction strongly depends on the local angle be-
the upper surface either along the direction of the mean floviween the surface and its mean plane. The following theoret-
or perpendicular to it: ical analysis will be based on a kind of local lubrication
In this work, we will analyze, for both types of fractures, approximation, in which the fracture is divided into smaller
with and without lateral shift, the case wérrow fracturesin rectangular blocks. The linear sizeof the blocks will be
which the gap sizé is small compared to the vertical fluc- estimated as the length scale over which fluctuations in the
tuations of the fracture surface over length scales comparablgrface height are small compared to the aperture and thus,
to the size of the systein In view of Eq.(2), we obtain that  ¢5ch of these basic blocks can be considered, approximately,

given by o,(L)=¢(L/€)¢ and, then the limiting situation of
narrow fractures corresponds toh/¢)<(L/€)%. In our
simulations, for systems size=512 the largest gap size
consistent with the previous constrainthig,,,~50. In our
numerical simulations, unless otherwise stated, we use ten
statistically independent realizations of the fracture surface,

and the results presented correspond to the average over
these different realizations. The transport properties of these narrow fractures can be

modeled using effective-medium ideas. The representation of
the fracture in terms of quasilinear blocks with random ori-
entation can be mapped onto a regular two-dimensional
The Lattice-Boltzmann method.BM) [28,29 is particu-  square lattice, of lattice spacirgy where the disorder only
larly suitable to investigate the flow of fluids in highly ir- enters the distribution of hydraulic conductances lying on
regular geometries, and, specifically, to study the various feaeach of the lattice bonds. Moreover, fluid flow is a locally
tures of transport in self-affine rough fractures which areconserved quantity at the lattice nodes and therefore this rep-
sensitive to their complex geometrical structure. A brief de—resentation of the fracture is completely analogous to the
scription of this algorithm is presented in our previous workclassical random resistor networks that model electrical
[7]. Periodic boundary conditions are used for the inflow andransport in disordered media1,32,34. This electrical ana-
ou.tflqw surfacgs and a constant pressure gradient forcing thgg' in combination with the Reynolds approximation, has
fluid is added in thex direction, while the gap between sur- peen ysed previously in somewhat related contexts—to de-
faces extends over . _ . scribe the flow behavior of fracture faults and the depen-
In what follows all quantities will be render«_ad d'”_‘ens'o_”' dence of the permeability on the contact area between oppo-
o s o o g SUTaced12 13, and (0 AU the conduciy of
! $racture faults as a function of the separation between uncor-

simulation time step as the time unit. Note that, since we ar?elated opposite fracture surfadgst,33.

concerned with incompressible flows, we do not need to in- Consider the t " dsandb of a sinal
troduce a dimension of mass. The relaxation time is chosen ~ONSId€r the WO Opposite endsandb of a single qua-
so that the kinematic viscosity i8=0.1 in dimensionless silinear block of a fracture, and its representation by a con-

units. The pressure gradient %p=6.25x< 10", yielding a ductance joining the corresponding two lattice nodesdb.
mean velocity in the range 2010 4< U, <2.0x 102, for Moreover, consider that a pressure drop is imposed between

separation between surfaces of the fracture between g the two nodes, and that the lattice bond joinmgndb is
<64. Then, for aperturds not larger tharhs= 20, the Rey- oru_anted elthgr pgrallel or perpendicular to the mean flow.
nolds number is Re U,h/»<1 and the flow is governed by Using the Poiseuille result for the flow through this segment
the linear Stokes equations, which are invariant under velocof the fracture we have that
ity rescaling. Moreover, using the results of R&0], where 3
inertia effects in a self-affine channel are investigated, we see —-_ [hcog6)] APap -
_ . - - Qa—>b gabA Pab €)

that for apertureb =32 (Re=1.6; note the porosity factor in 12 [élcoq6)]
Ref.[30]), the deviation from the Stokes result for the pres-
sure loss is less than 0.78%. Therefore, possibly aside from
the simulations with the largest aperture 64, there are no whereQ,_,;, is the flow rate from node to nodeb, g,y is
significant inertia effects on the flow rate. the bond conductancé,is the linear size of the block, arl
is the orientation angle of the block, with respect to the mean
plane of the fracture, in the direction of the imposed pressure
drop Ap,,. Let us note that a slightly different approxima-

Let us consider first the case in which the two matchingtion to the transport of fluid in a single block can be made by
surfaces of a fractured rock are separated by a distamece modeling each block as a cylinder of diameleros(@) and
the normal direction, with no lateral shift between them. Inlengthé. However, these two approximations will only differ
this situation, the aperture of the fracture is clearly constanby a numerical factor, given that the ratio of the permeability
everywhere, but the effective local aperture for fluid flow, of a cylinder to that of two parallel planes is independent of
i.e., the local width of the fracture channel normal to thethe separation between surfackg;aignt/Keylinger=32/12.

orientation angles with respect to the mean plane of the
fracture.

A. Analog resistor network and effective-medium
approximation

Ill. LATTICE-BOLTZMANN METHOD

IV. PERMEABILITY OF SELF-AFFINE FRACTURES
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Furthermore, the fluid is incompressible and flux is con-fore, the exact functional form of the distribution is not rel-
served at each lattice node, evant but only its low-order moments.
Finally, we assume that neighboring conductances are un-
correlated. Note that short-range order induced by the corre-
az;b 9ab(Pa— Po) =0, (4)  |ated topography of the fracture surfaces is accounted for by
means of the distribution of possible local orientation angles
of the unit blocks. In a similar manner in R¢fl4], short-
ange correlations were included by fixing the topology of
£I%e fundamental unit to be eithbatsor buckets represent-
ing peaks and valleys of the fracture surfdsee Sec. 2.2 in
gef. [14]). Moreover, although long-range correlations are
not explicitly included in the effective-medium approxima-
tion, it has been shown that EMA accurately describes the
effective conductivity of two-dimensional networks close to

method commonly used to calculate effective properties of ‘J;lhe perco_latlon threshoIEBS_]. OT‘ th? other hand, effective-
medium is a poor approximation in the presence of long-

microscopically disordered medium, in which the randomr nge spatial correlations, as arise in the presence of flow
microscopic parameters are replaced by a certain mea ge sp ' P

value, chosen in a self-consistent waydetailed discussion channeling [14.] or heterogeneities at the frac.ture scale
of this approximation can be found elsewh8a,35). The [11,17, found in the case of uncorrelated opposing fracture

idea then is to choose a mean EMA hydraulic conductanc urfaces. Assuming then a random distribution of local con-
Om. In a self-consistent way, such that it reproduces the a uctances, we can rewrite the integral equaish which

Vo .
erage local field. That is, the criterion to choagg within defines the EMA conductanag,, in terms of the reduced

EMA is to require that the extra pressure differencas,, 2 aplex=2/o>(¢), which is normally distributed,
induced when one individual conductance reverts fogmto

where the sum is over all nod@sconnected directly tdp.
Then, the problem is now to solve the previous system o
equations in the case where the hydrodynamic conductanc
Oap Vary according to some probability distribution, and we
shall discuss now an approximation commonly used to solv
this type of problems in the physics of disordered media
namely, theeffective-medium theory

The effective-medium approximatidEMA) is a standard

its original valueg,, average to zer§36], 1 X%\ gm(1+eX3)?=Gg
dx——=ex = =0, ()
V2 2 ) gm(1+ €32+ Gy
Imn—9 - (5)
gmtg/ where the dimensionless parameter o,(£)/¢ is the ratio

between the average magnitude of the fluctuations in the
height of the surfacer,(&) over a single block, and the size
of these blocks. In general, if the individual blocks of the
fracture are smaller than the characteristic lengtht we

In order to determine the mean EMA conductagge we  have thate>1, ande<1 for & larger thanf. However, since
first need to obtain the probability distribution of the indi- we consider the case in which the characteristic length is
vidual bond conductances,,. The conductance of a single small compared to the simulated length scalés- {0 3
block is determined by the angle between the local orienta<1, see Sec. ]| we have that
tion of the surface and the mean plane of the fracisee

B. Probability distribution of conductances and mean EMA
conductance

Eq. (3)]. In terms of the height differencé between the two (&) g\t
ends of the block, the bond conductance can be written as €= £ =\7 <1. )
2 \2 h3
9(2)=Go|l ——| , Go=-=—. g)  I'herefore, we can then evaluate the mean EMA conductance
£+7? 12ué in a perturbative weak-disorder expansion by computing suc-

cessive terms in the series expansiorggfin the perturba-

Then, the average over local conductances given in(Bg. tive parametek,
can be performed in terms of the distribution of height dif-
ferencesz, between points of the fracture surface separated gm=g%+ grlneer gfne4+ cee 9
by a distanceé (note that¢ is the distance between two
points lying on the fracture surface projected over the meaReplacing this series expansiong@y into Eq.(7), rearrang-
plane, i.e., the lattice constant. ing terms by their order ire, and given that the equation

Experimental measurements indicate that the distributiomust be satisfied for any value ef we obtain the following
of heights,p(Z), can be accurately described by a Gaussiarexpressions fogim:
distribution, at least for low-order momenit8,37]. Guided
by these results, the numerical procedure used to generate the g%: Go, (109
fracture surfaces is intended to produce self-affine surfaces

with Gaussian fluctuations of the height, as discussed in Sec. L _2(x)G (10b)
[I. Moreover, the perturbative analysis we shall present G 0

shows that higher moments of the height distribution func- 5 4 oo

tion are related to higher order correctionsgtg and, there- Im=[(X") +2(x)"1Go. (109
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Finally, computing the second and fourth moments of the
Gaussian distribution, we obtain the expansion in power se-
ries of e for the mean EMA conductance,

|

[ L/ /) )] ) )
[ [T T
O L W

iRR==se

—

Om=Go[1—2€>+5e*+0(e%)]. (1)

L]

Let us remark that only the second and fourth moments of
the Gaussian probability distribution of heights were in-
volved in the previous calculation, and higher moments only «
occur in higher order term®(e®). On the other hand, to
compute higher order terms in tleexpansion of the elec- y
trical conductivity of the network would require a different 3
approach, e.g., a perturbative weak-disorder expansion of th:
conductivity in terms of the moments of the probability dis-
tribution of bond conductances to directly solve Ed), 2
since EMA would no longer be an accurate approximation
[38].

The previous result for the mean EMA conductange 0
shows an important feature of the fractures, in that the same
result, up to second order iy is obtained if those conduc- —
tances that are perpendicular to the mean flow are eliminate:
from the resistor network, i.e., it predicts guasi-one- 1o
dimensionalflow. The two-dimensional character of the net- X
work only affects higher order term®(e*). In fact, deriving

from the previous equation the permeability of the fracture FIG. 2. Streamlineghorizontal curves and the propagation,
we obtain from left to right, of an initially flat front of tracer particlesertical

curves, injected atx=0, in the gap-averaged flow field. The im-
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h2 o (&) 2 posed pressure drop and thus the mean flow are along direc-
k~ — 1-2( z ) , (12 tion. The corresponding fracture surface is shown in Fig. 1. The
12 3 system size id =64 and the gap between fracture surfaces is

=8.

which is the same result as obtained in Réf] for two-
dimensional fracturefsee Eq(29) in Ref. [7]]. _ the dependence of,, on the size of the fracture gap, it is first

In Fig. 2 we present the streamlines and the propagatiofecessary to estimate the size of the unit blagksterms of
of an initially flat front of tracer particles in the velocity field 1, The linear size of the unit blocks was defined as the char-
inside a self-affine fracture, where the flow field was aver-ycieristic length over which the channel formed by the two
aged over the gap of the fracture. That is, velocities alongracture surfaces can be considered, insofar as flow is con-
and pe_rper_ldicular to the mean flow direction are averaged iBerned, as a straight one. Such an approximation is valid
the z direction over the aperture of the fracture, rendering gyhen the vertical fluctuations of the fracture surface over the
two-dimensional(2D) flow field u(x,y). Then, using this characteristic size of a unit block are a small fractionhof
flow field, the streamlines and the propagation of a flat frontHowever, the size of these blocks must not be too small
of tracer particles initially located at=0 are computed. The compared tch for the Poiseuille approximation to the flow
pressure gradient, and therefore the mean flow velocity, ar@side the blocks to be valid. Therefore, we might expect the

along thex direction,(U(x,y))=U,x. It can be seen that, as following relation to hold:
predicted by the effective-medium approximation, lateral
fluctuations in velocity are small compared to the mean flow, o(§) =C,=1, (13)

and streamlines are approximately straight lines oriented h

along the direction of the imposed pressure difference. How- ) o ] ]
ever, there is a substantial difference with the 2D simula\hereC, will be treated as a fitting parameter in our numeri-
tions, in that in the 2D case the gap-averaged mean floygal simulations, and consistency with the bouhd) will be
velocity is constant due to flux conservation, whereas in th&hown. . .

3D case, as is clear from Fig. 2, fluctuations in the gap- UYSing Eq.(2), we then obtain the small parameterin
averaged velocity occur, and result in the broadening of théerms ofh,

front of tracer particles as it travels through the fracture. K1
C €7 (14)

€=

C. Permeability dependence on the fracture gap

Thus far we have obtained the relation between the size diNote that, in the narrow fracture limit, the number of qua-
the quasilinear blocks composing our model fracture and theilinear blocksN, is given byN§=(L/§)2>(L/h)2>1, and
mean EMA conductance of the systepy. To further obtain  we can make use of the EMA resultfserting the previous
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FIG. 3. Relative deviation of the flow rate per unit width from
that of a straight channel as a function of the size of the vertical gap
h. We compare results from 2D and 3D simulations and from two
different sized_ of the systemlL =64 andL = 256. The solid line is
a fit to the numerical results obtained in the largest 2D system. FIG. 4. Fluctuations in the gap-averaged velocity field. The frac-

ture surface used in the numerical simulation is shown in Fig. 1, and
result into Eq.(11), we obtain the dependence of the perme-the corresponding streamlines and front propagation are presented
ability of a three-dimensional self-affine fracture on the sepain Fig. 2. The size of the system Is=64 and the gap size is
ration between surfaces, =8.

h12(¢ -1
T

c hr(‘“lw cussed in Sec. IV B the difference between the 2D and 3D
£

CéZ cases comes in the fourth order tel@(e*), and its correc-
61}t f[ion.is of relative magnitude 5_2/2. For the results pre_sented
C E} )] (15 in Fig. 3 the largest value of is e~0.15 (corresponding to

£¢ ' the smallest gap size=4), hence the relative magnitude of

the fourth order term is &/2~0.05, which is consistent

As mentioned earlier, this result is the same, through secongith the observed similarity between the results obtained in
order ine, as that for two-dimensional fracturgsee Eq(33) 2D and 3D cases. It can also be observed that the scaling is
in Ref. [7]]. In order to test this result numerically, we first closer to the one predicted for the large systeins 256),

recast it in terms of the flow rate per unit width In @  probably due to large finite size effects present in the smaller
straight channel of heighit and lengthL with fixed pressure  systems.

drop P, the flow rate per unit width igjo=h3P/12uL. In
view of Eqg.(15), therelative deviation fromqy in a fracture
of gap sizeh is given by

h2
k= 12{1 2

+0

D. Velocity fluctuations

In the preceding section we showed that the flow rate per
Jo—¢ h unit width in 2D and 3D fractures, which have the same
Y ~2 C&Z characteristic lengtlf, is very similar and, in fact, both have
the same scaling behavior as a function of the gap kize
In Fig. 3 we compare numerical results for the relativeHowever, as was discussed in Sec. IV B, there is an impor-
deviation of the flow rate per unit width from that in the tant feature of the flow field in 3D fractures that is not
parallel plate model, dy—q)/qy, obtained in 2D and 3D present in two-dimensional simulations, that is, the presence
fractures. In both cases, the fracture surfa@esture curves of velocity fluctuations even after the fluid velocity is aver-
in the 2D casghave the same roughness exponent and thaged over the gap of the fracture. In Fig. 4 we present the
same characteristic length and hence both have on averagefluctuations in the gap-averaged velocity, obtained by means
the same amplitude of the vertical fluctuations in surfaceof the LBM in a fracture of sizd.=64 and gap sizé=8.
height. We also show in Fig. 3 the scaling relation given byThe corresponding fracture surface is shown in Fig. 1 and the
Eq. (16), with the value ofC, obtained for two-dimensional streamlines corresponding to the gap-averaged two-
fractures in Ref[7], C,~0.1. As expectedC, is a small  dimensional velocity field are plotted in Fig. 2.
number consistent with the approximation of quasilinear Let us then investigate the magnitude of these fluctuations
blocks discussed above in connection with ELp). It can  in the gap-averaged velocity in the direction of the mean
also be seen that, in agreement with the effective mediurfiow, i.e., su,=u,(x,y)—U,. Previously, in Sec. IV A, we
prediction, both 2D and 3D results are very similar. As dis-calculated the mean EMA conductanag, in a self-

2(¢-1)ig

(16)
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consistent way. In a similar way, we can estimate the fluc- 10"
tuations in the gap-averaged velocity field in the direction of
the mean flow, in terms of the variance of the extra pressure
drops dp,p, - In fact, we might think of the random extra-
pressure-drops$p,, as the source of the velocity fluctua-
tions. Let us mention that the same result would be obtainec
if the fluctuations are computed in terms of the variance of
the induced excess of fluid flux. %“
The variance of the induced extra pressure drépg, a2
across a random bond conductaiggg oriented in the direc-
tion of the flow, is given by

: R
I9mn—9 4 ou /U,
gmtg >’

whereAp,, is the pressure drop in the uniform field solution,  ¢* .
across any bond conductance oriented along the pressure di h
ference.
Repeating now the procedure we followed to calculate the FIG. 5. Relative magnitude of the mean velocity fluctuations,
leading terms ofy,,, we obtain both parallel and perpendicular to the mean flow, as a function of
the vertical separation between surfabe§he mean flow is irx.
(8p%)y =X Apm) H[x2—(x?)]?). (18)  The size of the system Is=256.

17

(op%) = (Apm)2<

The previous is a general result, in that it is independent o . . . . .
the particular distribution of heights of the fracture surface.ﬁucwatlonS in the velocity perpendicular to the mean flow is

Now, if we replace in this equation the second and fourth‘;‘_ISO given by Eq._(21),_ with a fitted exponent-0.6+0.8.
morr;ents of the distribution by their normal valugs?) he large uncertainty in the fitted exponent comes from the
=1 and(x%=3, we obtain fact that the fluctuations perpendicular to the mean flow have

large variations between different fractures. Finally, it can be
(5p?)=2€*(Apm)>. (199  observed that fluctuations perpendicular to the mean flow are
weaker than fluctuations parallel to the flovy,~5 éu, .
Finally, using the fact that the relative fluctuations in the The approximately constant ratio between fluctuations along
pressure drop are equal to the relative fluctuations in thand normal to the mean flowu, / du,~5, is consistent with
velocity, ép/Ap,=du,/U,, we obtain the variance in the the conservation of fluid flux. On the other hand, the magni-

gap-averaged velocity, normalized by its mean value, tude of the velocity fluctuations are clearly related to the
spatial correlations in the velocity field, and we will find an

5 ob (8uZ)  (8p?) . analogous asymmetry in the autocorrelation function of the

o=—= = =2¢". (200 velocity fluctuations. Let us mention that similar results are

Ui U (Apy)? ined withi ic-conti

obtained within a macroscopic-continuum approach to the
let us rewrite theproblem of transport in heterogeneous porous formations,
where the magnitude of the fluctuations in the direction of
the mean flow are found to be three times larger than the

h)(Z{—Z)/Z perpendicular ones in two-dimensional systdi3g).

In order to test this result numerically,
previous equation in terms of the gap slze

8=C\2

) 21

. . . E. Fractures with shifted surfaces
where agairC; is an adjustable parameter.

In Fig. 5 we show the numerical results obtained for the ~Usually, when a rock is fractured its two matching sur-
normalized fluctuations of the gap-averaged velocity in thefaces are laterally shifted, that is, the displacement between
direction of the mean flow, as a function of the distahce them is not only vertical but also parallel to the mean plane
between unshifted fracture surfaces. We find a good agre@f the fracture. We shall now consider this situation, in which
ment with the predicted exponent, that is, the fitted exponerifie upper surface of the fracture is laterally shifted by a
is —0.58+0.08 and the predicted one is{2¢)/{=—0.5.  vectord=(d,d,) lying in the mean plane of the fracture.
The adjustable parameter is found to®g=2.1+0.9. Note  However, we will only consider the case where the fracture
that C, can be computed fronC; by means of Eq(14), is distinctly open, that is, the two surfaces do not touch each
obtainingC,=0.2, which is similar to our previous determi- other at any point. In this case the aperture of the fracture is
nation and is also consistent with the quasilinear approximano longer constant but becomes a random function of the
tion given by Eq.(13). positionagy(x,y) =z(x+dy,y+d,) —z(x,y) +h. Let us con-

In Fig. 5 we also compare the fluctuations in the gap-sider first, the case in which the lateral shift lies in the direc-
averaged velocity in both directions, along and perpendiculation of the mean flow, i.ed=d; . In Ref.[7] we investigated
to the mean flow. It can be observed that the scaling of théow such a lateral shift modifies the permeability of two-
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FIG. 7. Schematic representation of the intersection of a small
region of the fracture with a plane containing both the displacement
, , , , , vectord and the normal to the fracture surfaces. The depicted re-
10 20 h 30 40 0 0 gion contains two consecutive quasilinear blocks of gjzia the
unshifted and shifted cases. The local permeabilities are assumed

FIG. 6. Relative deviation of the flow rate per unit width from equal in the unshifted cade= K.

that of a straight channel, as a function of the mean vertical sepaB ¢ | ith . di
ration h between surfaces. The solid line corresponds to a 2D frac® etween surfaces), In agreement with our previous discus-

ture formed by two complimentary surfaces that are simply dis-Si0N, the correction to the flow rate obtained for three-
placed in the vertical direction, and the dashed line corresponds tgimensional fractures lies above the 2D case without lateral

results obtained when the upper surface of the 2D fracture is alsghift (upper bound for the total flow ratg) and below the
shifted bydx= 16 in the direction of the mean flow. Solid circles two-dimensional results obtained for the same lateral shift
correspond to 3D simulations with no lateral shift between thed=d; (lower bound for the total flow rate). It can also be
matching surfaces. Open triangles and squares correspond to tbdserved that, as we discussed earlier, for large separations
upper surface shifted in the direction of the flow Hy=16 and  between surfaces all the results converge to the unshifted
perpendicular to it byd, = 16, respectively. The size of the system situation described by Eq16).
is L=256. In three dimensions, it is also possible to have a displace-
ment perpendicular to the direction of the flodw=d, . Let
dimensional fractures. We showed that, for large separatiogs then investigate how the orientation of the lateral shift
between surfaces, such that the characteristic &ivéthe  affects the permeability of the fracture. In Fig. 7 we show a
quasilinear blocks is much larger than the lateral stjft schematic representation of the intersection of a small region
<¢, there is little change in the fracture geometry comparedf the fracture, approximated by two consecutive quasilinear
to the unshifted case, and that the permeability is asymptotblocks of size¢, with the plane that contains both the dis-

cally the same. On the other hand, when surfaces nearlyj,cement vectod and the vector normal to the mean plane
touch at some point, the permeability will be dominated byt the fracture. Although extremely simplified, this schematic
the large pressure drop around this point, as the fluid is corypresentation of the fracture shows the effect of the shift on
strained to flow through this narrow gap. Thus, as the Sufe |ocal permeability. It can be seen that, upon a lateral
faces become closer, we fou_nd a decrease in the permeab"'&fsplacement, the unshifted local permeability of a single
as compared to the _unshn‘ted case. The case of thregiaar block,ko, decreases_, or increasesk, , depending
dimensional fractures is som.ewhat different. For Ialrge S€P%n the orientation of the quasilinear block. Specifically, an
ration between surfacdsl|<¢; recall that¢=¢&(h)=xh™*]a  ihcrease(decreasein the permeability corresponds t6
behavior similar to the unshifted case is again expected, g (~ ). Furthermore, when the shift is in the direction of
since the change in the geometry of the fracture is asymiye fioy the two channels shown in Fig. 7 will be series
totically negligible, apd therefore, the scaling relation given; o approximately preserving the fluid flux. On the other
by Eq. (16) should still apply. On the other hand, when sur-y,5 'if the shift is in the direction perpendicular to the mean
faces are close to each other the fluid is no longer forced tqq\ the two blocks will be inparallel, that is, having ap-
flow through the narrow gaps, where the minimum separag,yimately the same end-to-end pressure drop. It can be
tion between surfaces occur, as in the 2D case. In three diy,q,n that, this somehow naive model predicts a reduction
mensions, the fluid can avoid these ]ow permeability regions, the permeability upon a shift in the direction of the flow,
by flowing around them. Thus, we might expect that the fluidy g 4 smaller correction in the case where the shift is per-
rate per unit widthg is bounded by the behavior in two- pangicylar to the flow, in agreement with the results pre-
dimensional fractures, that is, the upper boundjgiven by gonteq in Fig. 6. The same effect can be observed in the
the two-dimensional flow rate in the case without lateralexperimental work reported in Ref5], where the flow rate
shift, and the lower-bound given by the flow rate per unit, 55 ghserved to be larger in the direction perpendicular to
width in two-dimensional fractures with the same Iateralthe shift between the surfacésee Fig. 4 in Ref[5]). It can

o 2d 2d - -
shift, gg—g <A<dg=o- also be observed in the experimental work presented in Ref.

In Fig. 6 we present the relative correction to the flow rate[5] that the difference between the flow perpendicular and
per unit width, ¢o—q)/qo, as a function of the distance parallel to the shift decreases as the separation between the
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d=0

FIG. 8. The gap-averaged
velocity field du(x,y)=u(x,y)
- UX>V( is presented in three differ-
ent cases. On the top is the case
with no lateral shift between the
surfaces of the fracture. On the

bottom left we show the case
dx=16 dy“_16 =dj=16, and the cased=d,
=16 is shown on the bottom-right
corner. In all cases the vertical
separation between surfaceshs
=16.

10 20 30 40 50 60
X X

surfaces is increased, which is also in agreement with ouonly two contributions to tracer dispersion, molecular diffu-
results(see Fig. 5 in Ref[5]). Let us mention that, in our sion, which dominates at very low flow rates, <%, and is
simulations, the largest contrast betwegnandq, obtained independent of PeQ(P€), and Taylor dispersion, which is
for the smallest gap sizé=12, is found to beq, /q O(P¢€) and therefore becomes dominant at high flow rates
~1.24. Pe>1 [40-42. On the other hand, in three-dimensional
In Fig. 8 we show the effect of the orientation of the shift fractures another mechanism comes into play, that is, the
on the gap-averaged velocity fluctuatiodsy(x,y) =u(X,y) presence of spatial fluctuations in the velocity field. As dis-
—U,X, where the mean flow is subtracted in order to mag-cussed in the preceding section, the effective aperture of the
nify the fluctuations in the local velocity. The three different fracture is not constant, even in the case when the two
cases presented in Fig.®=0, d=d;, andd=d, , have the complementary surfaces have no relative lateral shift, which
same vertical gafh, and correspond to the same fracturedives rise to velocity fluctuations, as it was shown in Sec.
(same self-affine surfageln the case where the lateral shift |V D. Moreover, in contrast with the two-dimensional case,
is perpendicular to the flowl=d, , flow channels oriented these velocity fluctuations are present even after the local
in the direction of the imposed pressure drop are apparen€locity is averaged over the gap of the fracture. One of the
whereas these oriented channels are not present when tAEin effects of the spatial fluctuations in the fluid velocity is

shift is along the flow direction=d. that an initially flat invasion front of tracer particles will
become increasingly distorted, resulting in its broadening in
V. TRACER DISPERSION time, as it can be observed in Fig. 2. This so induced geo-

metric dispersion of tracer particles has been reported in pre-
Several tracer-dispersion mechanisms are present in th@ous studies of dispersion in fracturgs5,16 and is com-

transport of fluids through porous media and the relative impletely analogous to that observed in three-dimensional
portance of these mechanisms strongly depends on the meporous medig43]. However, let us note an important differ-
flow velocity [2]. Let us briefly review here the different ence between previous studies and the present work. In Refs.
dispersion mechanisms and their dependence on thketPe [15,16 the analysis is based on the lubrication or Reynolds
number PehU,/D,,, whereD,, is the molecular diffusiv- approximation, where a Poiseuille flow, with a parabolic ve-
ity, his the aperture of the fractures, adg is the mean flow locity profile across the aperture, is assumed to be locally
velocity. In the case of two-dimensional fractures there arevalid everywhere in the fracture. In this case, there are no
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fluctuations in the local velocity in the absence of fluctua-+x,y")—U,]), by transforming time into position through the
tions in the local aperture of the fractures, which is in fact themean flow velocityx= X(t) — X(0)= U,t. In Fig. 9 we show
case when there is no lateral shift between surfaces. On the equivalence betweerR;, and NRH' that is, Ry(x)
other hand, we consider the case of narrow fractures and the=

lubrication approximation is not valight least in its simplest =R|(IU,). Then, we can estimate the mean-square dis-
) ppro L P placement and calculate the dispersion coefficient in terms of
version. In fact, in our framework, geometric dispersion ef-

. ..., the spatial correlation function,
fects are present even in the absence of any lateral shift be- P

tween surfaces, due to variations in the effective aperture that 1 [«

induce spatial fluctuations in the velocity field. This situation DH=U—J’ Ri(§)dé. (23
was investigated in recent experiments, where the broaden- xJ0

ing and dispersive behavior of an invasion front of tracer From the previous equation it is clear that the dispersion

particles has been observed even in the case of no |ater§(|)efﬁ0ient depends on both the magnitude of the fluctuations
shift between complementary surfadés. and the length scale of the velocity correlations. Therefore,

In view of our previous discussion, we shall focus on howWwe introduce the characteristic correlation Iength of the ve-
the fluctuations in the gap-averaged velocity affect the dislocity fluctuations|., defined as
persion of the tracer particles. The molecular and Taylor con-

tributions to the dispersion of tracer particles were discussed | :i °°R (x)dx (24)
in our previous work, in the two-dimensional case, and they c 03 0 [ !

are not expected to be very sensitive to the fluctuations in the
gap-averaged flow velocity, in that the molecular diffusion iswhere ¢, is the rms dispersion in velocity,oﬁ
clearly independent of the velocity field and the Taylor dis-=([y,(x',y')—U,]?). The velocity correlation length,
persion is dominated by the gradients in velocity in the di-measures the typical length over which fluctuations in veloc-
rection perpendicular to the fracture surf@d@]. Then, ifwe ity are correlated and, similarly, we can define a correlation
only account for the geometric contribution to the dispersionime 7,=1./U,, which measures the characteristic time
of tracer particles the problem can be immensely simplifiedscale over which fluctuations in velocity remain correlated.
In fact, instead of working with the three-dimensional veloc-| et us remark that, is not necessarily equal to the previ-
ity field we can use the two-dimensional gap-averaged Vegysly defined linear size of the quasilinear blogksa fact
locity field u(x,y). The range in which the geometric disper- that hecomes clear upon consideration of the 2D case, where
sion is the dominant mechanism contributing t0 thégne can define a typical sizé over which the channel
dispersion of tracer particles corresponds to intermediate Pgormed by the opposing fracture surfaces can be considered
clet numbers(intermediate velocitigs and the presence of strajght, even though there are no fluctuations in the mean
such a range of et numbers in self-affine fractures will be yg|ocity and, therefore, the correlation lendthcannot be
discussed in detail at the end of this sectisee Sec. VE  (efined.
In Fig. 10 we present the spatial velocity autocorrelation
A. Velocity autocorrelation function function in both the direction of the flowg, and perpen-

. . N dicular to it,R, , for a system of sizé =512 and gap size
The mean-square displacement in the flow direction can + y gap

be expressed in terms of the velocity autocorrelation function ¢
in time Ry(t) (Ref.[44], p. 578,

t
((x=(x))*)= Zfodr (t—7){[ux(X(0),Y(0))— U,] 08 -
X[U(X(7),Y(7)—U\]) 06 | - Fu(x)
t B * R(x/U)
=2J'0d7' (t—T)~R||(T), (22 -3

04

wherex=X(t) andy=Y(t) are the trajectories of the tracer
particles incorporating the velocity fluctuations, and the av- ¢, |
erage is arensembleaverage over different realizations of
the problem. Furthermore, in Sec. IV D we showed that the
velocity field is approximately one dimensional, i.e., lateral . . . X . .
fluctuations are small compared to the mean velocity 0 20 40 6°x 80 100 120
(6u/U,<0.05). The velocity autocorrelation function in

time can then be related to the spatial velocity autocorrela- FIG. 9. Spatial velocity autocorrelation functid®(x) and its
tion function, specifically to the marginal spatial autocorre-comparison withﬁ”(xlux), both normalized byo2. The results
lation function in the direction of the mean flowaveraged correspond to a system of site=256 with the fracture surfaces
over the y direction, Ry(x)=([uy(x",y")—U,J[uy(x’ separated by=8.
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L0 - . - - ' - being just a scaling factq#6]. Therefore, the dimensionless
09 ] parameters=o,/U,, and the correlation length., are in-

o8 dependent otJ, . Then, rewriting Eq(23) we obtain,

07 D= 82Uy, (25

o which explicitly shows the linear dependence of the disper-
sion coefficient onU,. Furthermore, the dispersion of an
initially flat front of tracer particles at a given distance from
the injection point is independent &f, . Consider the situ-
ation in which a front of tracer particles is injected at the
inlet section of a fracturex=0). The dispersion of the tracer
front, measured as the mean square displacement of the
tracer particles, is then given by

05

04

R;;R,

03

02

01

0.0

40 80 120 0 20 240 ((x=(x))?)=2Dut=282 U, t=28%(x), (26
X3y
FIG. 10. Spatial velocity autocorrelation function, of the veloc- @nd it is clear that the dispersion of the front, at a fixed
ity component in the direction of the flow,—U,, in both the distancex=(x) from the inlet sectiorx=0, is independent
direction of the flowR; and perpendicular to R, . The autocorre-  0f U, In fact, it only depends oh, = 8 I, wherelp is the
lation functions are normalized hy? . The results correspond to a dispersion length of the fractufd7]. This fact, that the dis-
system of size. =512 and fracture surfaces separatechby8. persion of the front is independent of the mean flow velocity,
. _ ) ) .. was observed in the experiments presented in [B&fwhere

h=8. Itis clear that the spatial correlations in the direction;; ;s shown that the front shape depends on the injected vol-
perpendicular to the mean flow decay faster than along thﬁme but not on the flow ratésee Fig. 2 in Ref[5]).

flow direction, which is consistent with our previous result Let us then investigate the dependence of the dispersion
concerning the magnitude of the fluctuations, in that velocityIengthl on the gap sizé, accounting the dependence fon
D 1

fluctuations parallel to the mean flow are larger than fluctua- ; . :
tions perpendicular to itsee Sec. IV D). It can also be ob- of both the relative magnitude of the fluctuatiofisind the

served that both correlation functions do not vanish at longorrelation lengtt.. , _ ,
distances as it should be in an infinite system. In fact, the 1h€ dependence of on the gap size was discussed in
velocity fluctuations present a positive correlation in the di-S€¢- IV D, where we showed that

rection of the flow and are anticorrelated in the perpendicular

direction. This nonvanishing correlation can be explained in 82och =410/, (27)
terms of mass conservation and finite size effects. The gap-

averaged velocity, integrated over a line perpendicular to o the other hand, in Fig. 11 we show the correlation
the mean flowfromy=0 toy=L) is equal to the total flow a5 g function of the gap size, computed from our numerical
rateQ divided by the gap sizh, and it is a conserved quan- simylations using Eq(24), where it can be seen that the
tity all along the system. Therefore, local fluctuations in thecorrelation length increases with the gap dizé.et us men-
velocity u, should compensate themselves, giving rise tjon that, in order to minimize finite-size effects, as the pre-
negative spatial correlations i along the direction perpen- yjously discussed nonvanishing spatial correlations in the ve-
dicular to the flow. This same combination of effects, that is,jocity fluctuations, present in both parallel and transverse

mass conservation and the finite size of the system, leads frections, the computation of was performed in the largest
the observed positive correlation in the direction of the ﬂOW-system we could simulate, that is=1024.

However, this nonvanishing correlation should decrease as The gbserved decrease in the spatial correlations of the
the size of the system increases, as it can be observed in ol|ocity field, as the surfaces become closer, might be attrib-
results by comparing Fig. 9, which corresponds to a systenjted to a “screening” mechanism, that is, laslecreases the

of sizelL =256, with Fig. 10, which corresponds t0=512.  fjyctuations in the velocity field become stronger and the
A similar reduction of the asymptotic correlation with systemye|ocity tends to decorrelate over a shorter distance. An
size is observed in the fluctuations perpendicular to the Mmeagnalogous effect occurs in porous media flows, where a ve-
flow. The negative spatial correlation in the velocity field |ocity disturbance from a point force decays with a charac-
along the direction perpendicular to the mean flow, and theeristic “screening” length proportional to the square root of
fact that the velocity fluctuations decay faster in this directpe permeability (as seen from the Brinkman equation
tion, are also found in the co_ntmuum approach to transport iN48,49), which in our case is proportional to (the leading
heterogeneous porous me@#b]. order term.

As discussed earlier, the dependenceépbn h has two
opposite contributions. On one hand, the magnitude of the
In the Stokes flow approximation (R), the flow field  velocity fluctuations,5, which decreases with increasitig
becomes independent of the magnitude of the flow fdie, and, on the other hand, the correlation length of the velocity

-0.1
0

B. Dependence of dispersion on the gap size
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FIG. 11. Correlation length, as a function of the gap size FIG. 13. Log-log plot of the mean-square displacement of an
The size of the system is=1024. initially flat front of tracer of particles as a function of time. The

vertical dashed line corresponds to the dimensionless correlation

fluctuations,l ., which becomes larger ds increases. We time TC:'F/L. above which a dlffusn_/e_ _behgwor Is expected, T.he
upper solid line corresponds to the initial highly correlated motion

found that, as a result of these_oppo_sne effects, thg dispersi the tracer particles((Ax)2)=o2t2 The lower solid line corre-
length decreases as the gap size is increased, as it can be Sgffhgs to the best fit of the linear regime, with a dispersion coeffi-
in Fig. 12, where we show the dispersion lengfhas a  cientD,,=(2.7+0.7)x 10" . [The observed departure from a linear
function of the gap sizé. This result is in agreement with pehavior at early times is due to the constant term of the fitted linear
the qualitative behavior observed in REB], where the in-  regime, @x)% ,~ —15] The results correspond to simulation in a
vasion front of tracer particles becomes smoother as the gagystem withL =1024 and gap size=8, and were averaged over
of the fracture is increase@ee Fig. 5 in Ref[5]). four different realizations. The time is in units of the mean transit
Finally, note that underlying the previous discussion is theime of the mediunT=L/U, .
assumption that the spatial correlations in the velocity field ) o )
decay fast enough so that the integral in E2@) is finite ~ correlations of the velocity field was proved to induce
and, therefore, the broadening of the tracer front becomednomalous dispersion. However, those studies investigated
diffusive at length scales larger than the correlation lengtithe dispersion of tracer in the lubrication regime, where
.. Analogously, the dispersion of the front is expected to bemean velocity strictly follows the fluctuations in the aperture
diffusive at time scales larger than the correlation time Of the fracture and long-range correlations should be ex-
—1./U,. On the other hand, in previous studies of disper-peCted- On the contrary, the lubrication approximation is not

sion in self-affine fractures, the slow decay in the spatiav@lid in the case oharrow fractures and fluctuations in the
velocity field are due mainly to the locally random orienta-

tion of the fracture channel. In Fig. 13 we present the mean
square displacement of an invasion front of tracer particles as
a function of time. The vertical line shows the correlation
time, 7., after which a diffusive behavior should be ex-

| pected. It can be observed that the initial behavior corre-
S sponds to the highly correlated motion of the particles and, in
) fact, the numerical results closely follows the solid line that
(Y% S S N G — ] is given by((Ax)?)= o’t?, which is the limiting behavior of

-~ Eq. (22 for t—0. On the other hand, at times larger than

the velocity begins to decorrelate from its previous values,
004 |- 1 and the dispersion of the front deviates from the quadratic
behavior. Moreover, the lower solid line is given by a linear
fit to the mean square displacement, in the range of times

0.10 -

0.08

0021 0.2<tU,/L<0.75. The fitted value for the dispersion coef-
ficient is Dy =(2.7+0.7)X 10 °, in agreement with the ex-
000 . . . pected value calculated from Ed25), D,=(2.0=0.6)
0

10 h 20 30 X 10 °. However, the size of the system is not large enough
to observe a large range where the linear, dispersive, regime

FIG. 12. Dispersion lengthy as a function of the gap size is valid, and therefore the determination of the dispersion
The size of the simulated fractureslis= 1024. coefficient is not accurate. Nevertheless, the mean square
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displacement closely follows Ed22) at all times and, at 3x10°
large enough times, it clearly grows at a much slower rate
than in the anomalous regime observed in R¢i%,16,

where (Ax)2oct?¢, The=50 - 24 Fracue
Helle-Shaw cell
2107 Thy=10

C. Tracer dispersion in the three-dimensional velocity field
and tracer transit time distributions

The previous analysis of the dispersion problem was ]
based on the assumption that the leading contribution to the
dispersion of tracer particles comes from the spatial fluctua- 1x10* |
tions in the gap-averaged velocity field, which allowed us to
map the problem to a two-dimensional one. This approxima-
tion is only valid for values of the Rtet numbers such that
both molecular and Taylor dispersion are negligitlg]. As

we shall discuss, there might not be such a range’ofePe 5000 - 15000 e EY
numbers, depending on the geometric properties of the frac- Time
ture.

FIG. 14. Transit time distribution of tracer particles for three
'different ratios between the transit and correlation timess,
=1/2, 1, and 5.0, and for three different systems, a Hele-Shaw cell,
2D and 3D fractures. The simulation correspond to a system of size
L=512, gap sizen=16 and the transit time distributions are mea-
B= 2= (29 sured at a distanc&X=400 from the injection point.

The geometric contribution to the dispersion coefficient
given by Eq.(25), is larger than the molecular diffusion term
whenever the following inequality holds:

1
Dy= 484U, >D,=Pe> i
On the other hand, we might expect that Taylor-like dis-analyzed the fully developed dispersion regime, which is
persion becomes dominant at high flow rates, due to the preyalld at low injection rates or large fractu_res. Specifically, let
ence of stagnant zones within the fracture. In that case, #S measure the transit time of tracer particles, launched at the
heuristic estimate of the range of dt numbers where the inlet section of the fracture, that arrive at the cross section
geometric contribution generates a larger spreading of théituated at a distanagX. If T is the mean transit time of the
tracer front than that induced by the presence of stagnartacer particlesT=AX/U,, andp is the characteristic cor-

zones is given by relation time of the tracer velocity, then the Gaussian disper-
sive behavior would be valid for> 7. On the other hand,
h2u2 when the injection rate increases and the transit time be-
Dy=8%cU,>Dr= D, =Pe<p. (29  comesT=rp, the transit time distribution deviates from a

Gaussian distributions and exponential tails are generally ob-

Then, combining the previous two equations, it is clear thaserved in flow through porous medi5,50,51.
the geometric regime exists only for In the flow through fractures, as well as in the flow in a
Hele-Shaw cell, the correlation time of the velocity is given
by the diffusive time across the gap. For transit timles
=<1p the tracer particles do not have time to diffuse across
the gap and their velocity will remain correlated during their
That is, the product between the magnitude of the fluctuaconvective motion throughout the system. In this case, stag-
tions in velocity and the characteristic length over whichnant or low-velocity zones have the effect of retarding the
such fluctuations remain correlated should be large. Therdracer particles, and give rise to the exponential tails, due to
fore, the existence of such a range ofclee numbers in the fact that diffusive motion is the only mechanism avail-
which the dispersion of tracer particles due to the velocityable for the particles to leave these stagnant zg&2&k In
fluctuations is dominant, would depend on the geometricaFig. 14 we present the tracer transit time distribution for
properties of the fracture. In view of our previous results, inthree different ratios between the transit and the correlation
particular, the dependence &fandl. on h, we might expect times,T/7p=1/2, 1, and 5.0, and for three different systems,
that the geometric dispersion would be dominant in the limitHele-Shaw cells, 2D and 3D fractures. First of all, it can be
of narrow fractures i.e., large fluctuations of the surface observed that, fof/7p>1, all the transit time distributions
height and small separation between fracture surfaces. lare Gaussian and very similar to each other. On the other
terms of the small parameter o,(§)/¢, the geometric con- hand, as the transit times beconfésy=< 1, the distributions
tribution will be asymptotically dominant, for any value of deviate from a Gaussian curve, becoming increasingly asym-
the Pelet number, in the limit—0. On the other hand, as metric. It can also be observed that both two- and three-
the gap of the fracture is increased, the geometric contribudimensional fractures present slightly more persistent tails
tion will be asymptotically negligible in the limih— oo, than in the Hele-Shaw case. The similarity between the dis-

Finally, let us consider the transit time distribution of tribution in 2D and 3D fractures is in total agreement with
tracer particles at high injection rates. Previously, we haveur previous results, where the velocity field for three-

|
g=52ﬁ>1. (30)
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3x10™ . . approach and, furthermore, allowed us to compute important
transport parameters of the fractures, such as the dispersion
length, and their dependence on the aperture. Two different
cases were investigated, the unshifted case, in which the two
o 2d Fracture matching surfaces of the fracture are displaced in the direc-
P34 e ] tion normal to the mean plane, and the shifted one, in which

the upper surface is laterally displaced either in the direction
of the flow or perpendicular to it.

First, we modeled the fractures by a regular two-
dimensional square lattice of bond conductances, and the lat
tice spacing and the distribution of bond conductivities were
related to the geometrical properties of the fracture. Specifi-
cally, we related the lattice spacing to the length scale over
which fluctuations in the surface height are small compared
T to the aperture of the fracture, and it was determined in terms
of the roughness exponent, the characteristic length and the
aperture of the fractures. Then, adapting some well-known

FIG. 15. Transit time distribution of tracer particles for two (egylts obtained by means of the effective-medium approxi-
different ratios between the_transit and correlation timessp mation in the analogous random-resistor network, we ob-
=1/2 and 5.0, and for three different systems, a Hele-Shaw cell, 2Qyine the permeability of the fracture and its dependence on
and 3D fractures with opposite surfaces laterally displacediby o anerture in the limit ofiarrow fractures We showed that
=dx=16. The simulation corresponds to a system of &iz&512, o ermeanility is, up to second order in a perturbative pa-
gap sizeh=16 and the transit time distributions are measured at Gameter, the same as in two-dimensional fractures. This
distanceAX=400 from the injection point. quasi-two-dimensional behavior of the transport of fluids
) ) ) through self-affine fractures was confirmed by the numerical
dimensional fractures was shown to be quasi-two-compytations of the streamlines, which presented very small

dimensional in the absence of a lateral shift between theyiera) fluctuations. A similar behavior was also observed in
surfaces of the fracture. On the other hand, we feel that thfhe experimental work reported in R§], in that the struc-

small difference between the transit time distribution in Se”‘ture developed by the invasion front of tracer particles pre-

affine fractures and in the Hele-Shaw cell might be related tQgnts very small fluctuations perpendicular to the mean flow
the presence of low-velocity zones in the fractures, which are, ine unshifted casksee Fig. 4a) in Ref.[5]]. Moreover, the
not present in a straight channel. This enhancement of thg.jing behavior of the permeability with the aperture was
long-time tails due to the presence of low-velocity zones erified by our numerical results and, in addition to that, we
should be more evident in the presence of a lateral shift. ghowed that it is in agreement with numerical results per-
In Fig. 15 we present the transit time distribution of tracersqmed in two-dimensional fractures. However, we also dis-
particles, in the same three different cases as in Fig. 14, buf;ssed an important difference between the 3D and 2D cases,
in this case the upper surface of the fractures is laterally,amely the presence of fluctuations in the gap-averaged fluid
shifted in the direction of the flow bgt=dx=16. Firstofall,  yg|ocity in three-dimensional fractures, and we were further
it can be observed that, as in the unshifted case presented §pje o predict the scaling behavior of the velocity fluctua-
Fig. 14, all distributions a.re-Gaussmn and very similar tojons in the direction of the mean flow by means of the
each other for large transit time$/7p=>5.0. On the other  gffective-medium approximation. The numerical simulations
hand, for much smaller transit timeB/7p=0.2, a long-time  yere in agreement with this result and, furthermore, showed
tail develops, in particular in the case of two-dimensionalihat the velocity fluctuations in the direction perpendicular to
fractures. As shown in Sec. IV E, two-dimensional fractureshe flow have the same scaling but are approximately three
present lower permeabilities than the three-dimensional on&gmes smaller in magnitude. Similar results were obtained in
in the presence of a lateral shift, due to the fact that in the 3Qnhe continuum approach to transport in heterogeneous porous
case the fluid can avoid low permeability regions by_ f|0Wi”9media[39,45]. Finally, we investigated the case of shifted
around them. Therefore, the presence of low-velocity zonegyrfaces and showed that the permeability of the fractures
is more important in 2D and thereby the effect of these ZOnegtrongly depends on the orientation of the shift, which is
on the long-time behavior of the transit time distribution be-gjther in the direction of the imposed pressure drop or per-
comes more important. pendicular to it, in the limit ofnarrow fractures Further-
more, by means of numerical simulations we showed that the
flow rate per unit width in three-dimensional fractures is
bounded by the two-dimensional results. Specifically, for a
Transport properties of three-dimensional self-affinerelative shift in the direction perpendicular to the mean flow
rough fractures were investigated by means of the effectivethe permeability is slightly affected and lies above the per-
medium approximation and numerical simulations using themeability of two-dimensional fractures. On the other hand,
Lattice-Boltzmann method. The numerical simulations veri-when the upper surface is shifted in the direction of the flow
fied the scaling behavior predicted by the effective-mediunthe permeability is largely reduced, but not as much as in the
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two-dimensional case. The latter is due to the fact that irmetric properties of the fracture, there might be no such
three-dimensional fractures, in contrast with the two-range of Pelet numbers. However, we found that the geo-
dimensional case, the fluid can avoid low-permeability re-metric dispersion is dominant in the limit ofarrow frac-
gions by flowing around them. We also presented a simplitures and in general is dominant for dispersion lengths larger
fied representation of a local region of the fracture thatthan the aperture of the fractures. We also investigated the
although naive in character, captures the effect of the orienransit time distribution of tracer particles, and their depen-
tation of the shift on the permeability of the fracture. The dence on the mean transit time. We showed that, as the mean

same effect is observed in experiments, in that the flow raf@nsit time is reduced and it becomes comparable to or
is larger in the direction perpendicular to the relative shiftSmaller than the correlation time of the tracer velocity, the

between surfaceee Fig. 4 in Ref[5]) transit time distribution becomes increasingly non-Gaussian,
In the second part of this work, we investigated the dis_devel_oplng long-time 1tails due to the presence of low-
persion of tracer particles in self-affine fractures. Specifi-yeloc'ty zones where the only mechanism for tracer transport

cally, we analyzed the dependence of the geometric contrt® molecular diff_usi_on. In general, the transit t.ime d_istrik_)u—
bution to the dispersion process on the aperture of th jons are very similar to the case of tracer dispersion in a

fracture. First, we simplified the analysis by mapping the ele-Shaw cell, except for the case of wo-dimensional frac-
problem to the dispersion of tracer particles in the two-tures shifted in the direction of the flow, which present the

dimensional gap-averaged velocity field. We then distin—IargeSt tails probably due to an enhancement of the low-

guished between the two contributions to the dispersion Co\_/elocity zones by the relative shift between surfaces. In fact,

efficient, namely, the relative magnitude of the veIocityin agreement with the latter results, the two-dimensional
’ \ -I{ractures, with the upper surface shifted in the direction of

agreement with previous studig39,45, the autocorrelation the flow, were shown to have the lowest permeability.

function of the velocity fluctuations decays faster in the di-
rection perpendicular to the mean flow. Finally, we showed
that, even though the correlation length increases with the We thank J. P. Hulin and H. Auradou for useful discus-
aperture, the dispersion coefficient is asymptotically small irsions and for sharing with us their experimental results; G.
the limit of wide fractures. The latter effect is also observedDagan for carefully reading the manuscript and for his many
in the experiments presented in REE] where it was shown suggestions; R. Chertcoff, I. Ippolito, D. L. Johnson, and N.
that the invasion front of tracer particles becomes increasNerone for useful discussions. This research was supported
ingly smooth as the aperture of the fracture is increased. by the Geosciences Research Program, Office of Basic En-

Finally, we investigated the dispersion of tracer particlesergy Sciences, U.S. Department of Energy, and computa-
in the fully three-dimensional velocity field inside the frac- tional facilities were provided by the National Energy
tures. Specifically, we discussed the range afl@enumbers Resources Scientific Computer Center. G.D. thanks Conicet
in which the geometric contribution to dispersion is expectedArgentina and the University of Buenos Aires for partial
to be dominant and we showed that, depending on the geaupport.
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